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Theoretical Evidence for a Dense Fluid Precursor to Crystallization

James F. Lutsko and Grégoire Nicolis
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C.P. 231, Boulevard du Triomphe, 1050 Brussels, Belgium
(Received 29 July 2005; published 2 February 2006)
0031-9007=
We present classical density functional theory calculations of the free-energy landscape for fluids below
their triple point as a function of density and crystallinity. We find that, both for a model globular protein
and for a simple atomic fluid modeled with a Lennard-Jones interaction, it is free-energetically easier to
crystallize by passing through a metastable dense fluid in accord with the Ostwald rule of stages but in
contrast to the alternative of ordering and densifying at once as assumed in the classical picture of
crystallization.
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Crystallization is an intricate process of fundamental
importance in many areas of physics, chemistry, and en-
gineering. The classical picture of crystallization from
supersaturated solutions goes back to Gibbs and consists
of the spontaneous formation of crystalline clusters, which
then either grow or shrink depending on the relative im-
portance of the free-energy gain due to the lower bulk free
energy of the crystal cluster and the free-energy penalty
due to the surface tension between the two phases. In this
picture, the local density is the only order parameter: The
crystalline cluster is (in general) denser than the fluid. In
recent years, this picture has been called into question by
simulation, theory, and experiment for the particular and
important case of the crystallization of globular proteins.
ten Wolde and Frenkel (hereafter tWF) showed by means
of simulation that the free-energy landscape of protein
crystal clusters as a function of the number of atoms in
the cluster and the ‘‘crystallinity’’ favored paths leading
from no clusters to clusters with low order to ordered
clusters over paths moving from no clusters directly to
ordered clusters [1]. This picture was confirmed by
Talanquer and Oxtoby [2] and Shiryayev and Gunton [3],
who showed using a parametrized van der Waals-type
model of globular proteins that surface wetting did indeed
lower the free energy of crystal clusters. More recently, the
simple picture has also been challenged by novel experi-
mental investigations. Vekilov and co-workers have shown
that, prior to crystallization, protein solutions harbor meta-
stable droplets of dense fluid, and they have suggested that
these droplets are necessary precursors of crystallization
[4–6]. In this Letter, we show by means of classical density
functional theory calculations that there is an intrinsic free-
energy advantage in first densifying into a metastable
dense-fluid state and then crystallizing rather than follow-
ing the classical path which goes directly from gas to
crystal. Furthermore, our calculations suggest that a similar
advantage exists for fluids of small molecules, modeled
here via the Lennard-Jones (LJ) interaction, thus indicating
that this mechanism may underlie most crystallization
processes.
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The starting point for our analysis is classical density
functional theory (DFT) which is based on a theorem, due
to Mermin, that the Helmholtz free energy of a classical
system is a unique functional F��� of the local density
��~r�. The local density is a constant, �� ~r� � ��, for a bulk
liquid, while for a simple bulk solid it is a sum of localized
functions centered on the lattice sites,

��~r� �
X
i�0

f�~r� ~Ri�; (1)

for some function f� ~r�, where the vectors f ~Rig are the
lattice vectors. Typically, in a bulk solid, this is approxi-
mated as a Gaussian, f�~r� � �0�

�
��

3=2 exp���r2�, where
�0 2 �0; 1� is the fraction of lattice sites which are occu-
pied and the parameter � is related to the degree of
crystallinity. The average density for a lattice with N0

lattice sites per unit cell is �� � 1
V

R
V �� ~r�d~r � �0N0a

�3,
where a is the lattice constant and V is the volume of the
system. Given the Gaussian approximation, the density can
also be written in terms of Fourier components as

��~r� � ��� ��
X
i�1

exp�i ~Ki � ~r� exp��K2
i =4��; (2)

where f ~Kig are the reciprocal lattice vectors. This form
shows clearly that as � goes to zero, the density becomes
uniform corresponding to a fluid, whereas the real-space
form shows that, as � goes to infinity, the density becomes
infinitely localized as a sum of Dirac delta functions. For
this reason, it is natural to takem 	 exp��K2

1=4�� to be an
order parameter measuring ‘‘crystallinity,’’ since it be-
comes zero for the liquid and one for the infinitely local-
ized solid. The use of two order parameters, average
density �� and crystallinity m, will allow us to explore
different pathways from the gas/liquid to the solid. Using
two order parameters thus provides a richer space of pos-
sible behaviors and intermediate states than does a single
order parameter [7]. Note, however, that this is a minimal
extension beyond a single order parameter: In general, the
solid phase is characterized by many order parameters, but
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FIG. 1. The phase diagram for a LJ potential (left) and the
ten Wolde-Frenkel potential (right). The solid and dashed lines
are from the model and the points are from simulation,
Refs. [1,23,24], respectively. The dotted lines connect the coex-
istence points used in Figs. 2 and 3.
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the Gaussian approximation made here means that the
other order parameters can be expressed as functions of
these two [8].

In order to use DFT in practical calculations, it is of
course necessary to know the functional F���. Good ap-
proximations exist for this functional for the special case of
hard-sphere interactions, but the extension of these to other
potentials has proven difficult. For this reason, liquid- and
solid-state perturbation theory are often used as a means of
using the hard-sphere theory to approximate the functional
for other systems [9]. Indeed, simple manipulations yield
the exact relation

�F��� � �FHS��; d� � ��F� ���

�
Z
V

Z
V
��� ~r1� � ������ ~r2� � ���



Z 1

0
�1� ���c2� ~r1; ~r2; ����; d�����d�d ~r2d ~r1;

(3)

where � is the inverse temperature, FHS��; d� is the free-
energy functional for a hard-sphere system with hard-
sphere diameter d���, and �F� ��� is the difference in free
energy of a liquid at density �� and that of a hard-sphere
liquid at the same density. In the integral, �c2� ~r1; ~r2; ����;
d����� is the difference in 2-body direct correlation func-
tions (DCFs) for the interacting system and the hard-sphere
system for a density ���~r� � ��� ���� ~r� � ���. The DCFs
are not known exactly, and so it is necessary to introduce
approximations to proceed. Motivated by the fact that, in
applications of thermodynamic perturbation theory to sim-
ple fluids, the correction to the hard-sphere free energy is
typically similar for fcc solids and liquids, we will make
the simplest approximation, which is to assume that the
contribution of the third term is insignificant. This model
has been shown to work well for the LJ potential [10] while
using the more detailed model of Curtin and Ashcroft [9],
which is closely tied to the LJ potential, we indeed find the
third term to contribute little. More sophisticated approx-
imations will be discussed in a future publication. Here our
interest is not the further development of DFT but in its
application to the question of the kinetics of crystallization.

In the following, we use the first order Weeks-Chandler-
Andersen perturbation theory [11,12] as modified by Ree
et al. [13] to calculate the free energy of the liquid phase.
This theory is known to be very accurate for a wide class of
potentials. The liquid-phase hard-sphere diameter calcu-
lated from this theory is used for both the liquid and the
solid phases, so that it is indeed solely a function of the
average density. For the hard-sphere free-energy func-
tional, we use the fundamental measure theory (FMT),
specifically the ‘‘white bear’’ functional [14–16], which
gives a good description of the hard-sphere phase diagram,
in particular, reproducing the Carnahan-Starling equation
of state for the hard-sphere liquid. The use of the FMT free-
energy model is critical: Previous attempts to perform
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similar studies made use of effective liquid approxima-
tions, which do not work well when the occupancy is
treated as a free variable and which, therefore, had to be
modified in an ad hoc manner [8,17]. The FMT have built
into them the critical feature that they are sensitive to the
local density and correctly cause the free energy to diverge
if the local occupancy grows above one.

The calculations presented here were performed using
the standard LJ potential vLJ�r� � 4"���r�

12 � ��r�
6�, widely

used as a model for the interactions of atomic fluids, and
the potential of tWF vtWF�r�, which is intended to model
the interactions of globular proteins [1]. The latter consists
of a hard core of diameter � and a modified LJ tail
vtWF�r� � vLJ��

1=6�r2 � �2�1=2� for r > �, where � con-
trols the range of the interaction; following Ref. [1], we
take � � 50. Figure 1 shows the phase diagrams for both
interaction models calculated using our simplified DFT.
(Note that the DFT also predicts a spinodal line, but, for
clarity, it has not been shown.) In both cases, the phase
diagrams are reproduced surprisingly well given the simple
models used. The observed deviations from the simulation
data can be at least partly explained as arising from the use
of the liquid-state free-energy difference for the solid,
which requires knowledge of the liquid state at high den-
sities for which even the input hard-sphere equation of
state is not reliable. Furthermore, the determination of
phase coexistence is a very sensitive test, since it depends
on getting both the absolute magnitude and the slope of the
free energies correct. To put this in perspective, deviations
are observed in Fig. 1 between the calculated and simu-
lated gas-liquid coexistence curve for the LJ system even
though the liquid-state perturbation theory gives free en-
ergies which differ from simulation by less than 1% [13].

The difference between the phase diagrams of the two
interaction models is significant and generic. Whereas the
LJ interaction gives rise to a typical phase diagram with a
critical point and, at lower temperatures, distinct gas and
liquid phases and a triple point, the tWF interaction model
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gives only a single liquidus phase which is typical of short
ranged interactions. Indeed, as the parameter � in the tWF
potential is varied from � � 1 to � � 50, the phase dia-
gram evolves continuously from one similar to the LJ
phase diagram to that shown here possessing a metastable
gas-liquid transition [18]. This model is motivated in part
by the fact that a dense metastable liquid phase is, in fact,
experimentally observed for some proteins. It is this meta-
stable phase which tWF showed to play a role in nucleation
of the solid phase from the gas.

Given a reasonable model for the DFT free-energy func-
tional, we now turn to the question of the effect of different
paths through density space from a gas of density ��gas and
crystallinity mgas � 0 to a solid with density ��solid and
crystallinity msolid. Here we consider two candidate paths.
The first corresponds to a simultaneous densification and
ordering of the gas into a solid and is parametrized as

���x� � ��gas � x� ��solid � ��gas�; m�x� � xmsolid; (4)

where x 2 �0; 1� is an abstract reaction coordinate. This
might be thought of as the ‘‘classical’’ path. The second
path we consider is a two-step process consisting of first a
densification at zero crystallinity followed by an ordering
at fixed density

���x�� � ��gas�2x� ��solid� ��gas����
1
2�x�� ��solid��x� 1

2�;

m�x����x� 1
2��2x�1�msolid: (5)

Figure 2 shows the free-energy landscapes encountered
using the tWF potential along both paths for coexisting
gas and solid densities at three different temperatures. In
all three cases, the classical path requires overcoming a
free-energy barrier as expected. The behavior along the
nonclassical path is more complex. At the highest tem-
perature, which lies about the critical point of the meta-
stable gas-liquid transition, the nonclassical barrier is
somewhat reduced but the effect is not significant. For
the intermediate temperature, which is somewhat below
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FIG. 2 (color online). The Gibbs free-energy barriers, per
atom, for the tWF potential. The solid curve is for the classical
path and the broken curve results from densification followed by
ordering.
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the critical point, a second, metastable state appears and
the single free-energy barrier splits into two lower barriers.
At the lowest temperature, the barriers encountered along
the nonclassical path are even lower, so the advantage of
this path is even greater. This picture agrees well with that
developed by Vekilov and co-workers who have observed,
by means of dynamic light scattering, the presence of
short-lived dense-liquid droplets in protein solutions [5].
The results for the LJ system, shown in Fig. 3, are unex-
pected in that a similar phenomenon is observed although
the details differ. Again, we show three temperatures,
which are this time all below both the critical point and
the triple point. The highest temperature is only just below
the triple point, and, again, it is clear that the nonclassical
path is energetically favored relative to the classical path
and that this correlates with the presence of a metastable
dense-liquid state. Unlike the previous case, the advantage
of passing along the nonclassical path remains more or less
constant as the temperature is decreased. Also different is
the fact that the barrier between the metastable state and
the solid state is much lower than that between the gas and
the metastable liquid. This suggests that the droplets in the
metastable state will crystallize quickly and will be corre-
spondingly shorter-lived. To check this surprising result,
we repeated our calculations using the model described in
Refs. [9,17], which is tuned to the LJ potential. While the
barriers were somewhat smaller, the qualitative results
were the same.

We have presented calculations of the free-energy land-
scape as a function of density and crystallinity based on a
simple, robust free-energy density functional. Our calcu-
lations involve no input or parametrization except for the
interaction potential. In both cases studied, a model protein
and a simple liquid, our results provide direct support for
the Ostwald rule of stages for nucleation [19] since the
free-energy barriers associated with the metastable inter-
mediate states are lower than those for a direct transition
from gas to solid. The results for the model protein inter-
action agree with the generally accepted picture that crys-
tallization proceeds via a two-step process of densification
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FIG. 3 (color online). Same as Fig. 2 for the LJ potential.
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followed by crystallization [4], even when the temperature
is slightly above the critical point and no metastable inter-
mediate phase exists. Interestingly, we find similar behav-
ior for simple fluids below the triple point, suggesting that
crystallization involving passage through a metastable dis-
ordered state may be a generic phenomenon. However, in
that case, the metastable state is expected to be shorter-
lived compared to the nucleation time, thus making its
experimental detection more challenging. The only evi-
dence we are aware of for the two-step nucleation mecha-
nism for nonprotein fluids comes from nonphotochemi-
cal laser-induced nucleation of small organic molecules
[20,21] and recent molecular dynamics simulations of the
crystallization of AgBr from solution [22]. The short life-
time of the metastable phase predicted here would explain
why it has not so far been observed experimentally in
simple fluids.

For the protein model, our results indicate similar bar-
riers for the gas-liquid and liquid-solid transitions, and it
should be noted that the only experimental results indicate
that the latter should be much higher than the former [6]. In
part, this is because we have presented results for the free-
energy landscape for transitions near the coexistence lines.
For denser gases, which are supersaturated with respect to
crystallization, the free energy of the gas phase moves up
so the first barrier is smaller. However, it is important to
notice that the crossing of the free-energy barrier is a
fundamentally nonequilibrium process, so that kinematics
also plays an important role in determining the overall
nucleation rates [4,7]. Nevertheless, if crystallization ki-
netics occurs reasonably close to equilibrium, the free-
energy functional will play a central role, since the rates
of change of the order parameters will be given by the
product of its gradient and of a matrix of phenomenologi-
cal parameters.

A point which could cause concern is that the paths
through parameter space might cross the spinodal and so
pass through the two-phase region, where it could be
thought that the use of DFT is problematic. In fact, aside
from the minima, all points on the curves shown in Fig. 2
are thermodynamically unstable. However, the fundamen-
tal idea underlying DFT is that any density profile can be
stabilized by means of an external field and that the free
energies calculated are the intrinsic contribution to the free
energy when such a stabilizing field is present (see, e.g.,
Ref. [12]). Only the intrinsic contribution is used here to
estimate the barriers, as the real system must pass through
these states without the presence of such a stabilizing field.

One question not answered yet is whether the particular
pathways discussed here are the optimal, i.e., minimum
energy, pathways. Simple contour plots of the free energy
show that the nonclassical paths used here are indeed very
close to the optimal paths, as will be discussed at length in
a future publication. Another question is the role of surface
tension which should, in general, increase the free-energy
barriers, as well as the free energies of clusters in the
metastable and solid states. Since the penalty due to sur-
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face tension is expected to increase as the system passes
from the gas to the metastable state to the solid state, we
expect that the barriers and the free-energy minima will be
shifted accordingly, but it seems unlikely that the overall
picture would change, since this would require that the
addition of surface tension affect the classical path less
than the nonclassical path. A definitive answer to this
question will require calculations of free energies for in-
homogeneous states, which we are currently pursuing.
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