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Mesoscopic nucleation theory for confined systems: A one-parameter model
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Classical nucleation theory has been recently reformulated based on fluctuating hydrodynamics [J. F. Lutsko
and M. A. Duran-Olivencia, Classical nucleation theory from a dynamical approach to nucleation, J. Chem. Phys.
138, 244908 (2013).]. The present work extends this effort to the case of nucleation in confined systems such
as small pores and vesicles. The finite available mass imposes a maximal supercritical cluster size and prohibits
nucleation altogether if the system is too small. We quantity the effect of system size on the nucleation rate. We
also discuss the effect of relaxing the capillary-model assumption of zero interfacial width resulting in significant

changes in the nucleation barrier and nucleation rate.
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I. INTRODUCTION

Nucleation is a ubiquitous process in nature which has been
the subject of extensive research throughout the last century.
Nowadays the most well-known understanding of the process
relies on Gibbs’ work [1-3] concerning the characterization
of phase transformations. Mainly focused on transitions near
the equilibrium, Gibbs deduced a simple expression for the
work required to form a spherical embryo (so-called cluster)
of the new phase within the old one, W(r), with r being
the cluster radius. While these efforts set the thermodynamic
ground for understanding nucleation phenomena, Volmer and
Weber [4,5] were the pioneers to reveal the importance of the
kinetics of nucleation. They proposed a rudimentary model
to account for the chief characteristics of such phenomenon.
A short time later, a more atomistic picture was proposed by
Farkas [6], who developed the idea of Szilard and that was
further developed by Becker and Doring [7], resulting in the
equation which now bears their names. Finally, Frenkel [8,9]
and Zeldovich [10] reached a similar result which also allows
to describe non-steady-state kinetics. Turnbull and Fisher [11]
generalized this formalism in order to describe solid nucleation
from a liquid phase, an approach that was readily extended to
include nucleation in solids. The nucleation-rate expressions
derived from all these developments have an Arrhenius-like
structure [12,13] but they differ in the exact expression for
the preexponential factor. The combination of these ideas
comprise a remarkably robust theory which is commonly
called classical nucleation theory (CNT).

Besides being a versatile tool, CNT is intuitively ap-
pealing and clearly summarizes the basic rules underlying
phase transformations. However, while CNT has shown an
extraordinary ability to predict the functional dependence of
the nucleation rate on the thermodynamic variables involved, it
has exhibited a severe disability when it comes to quantitatively
explaining experimental data [14—16]. This flaw has been
usually blamed either on a poorly refined expression of the
work of cluster formation or on the heuristic modeling of
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cluster formation based on macroscopic growth laws, or on the
simplicity of the cluster properties assumed by the capillary
approach. There have been several attempts to extend and
refine CNT, e.g,. generalizing the kinetic model [17,18] to
consider wider cluster transitions than that initially assumed
by the pioneers of nucleation [7-10,19,20], providing more
accurate expressions of the free energy barrier by using
classical density functional theory [21,22] (DFT), refining the
capillary model [23], or selecting a different order parameter
instead of the cluster size to characterize the nucleation
pathway [24]. There has also been an extensive discussion on
the reformulation of nucleation theory using the tools of the
theory of stochastic processes and fluctuating hydrodynamics
to describe the kinetics of nucleation [25-29]. However, most
previous work that mentions fluctuating hydrodynamics only
makes use of it in an indirect fashion. Recently, a new approach
to nucleation has been formulated [30-32], purely based on
fluctuating hydrodynamics [33]. We refer to this as mesoscopic
nucleation theory (MeNT). This new framework provides a
self-consistent justification and extension of more heuristic
equilibrium approaches based solely on the free energy. MeNT
provides a general stochastic differential equation (SDE) for
the evolution of an arbitrary number of order parameters
characterizing the number density field. When the simplest
case is considered, which is a single-order parameter, a
straightforward connection with CNT is found [34]. Such
a reformulation of CNT, hereafter called dynamical CNT
(dCNT), sheds light on the weaknesses of the classical
derivation and can be used to construct a more realistic theory
in which clusters have finite interfacial width.

The present work aims to continue this development so as
to extend dCNT to the case of confined systems. In the past
few years there has been a veritable explosion of interest in
nucleation due to the development of new techniques, such
as microfluidics, that bring us the opportunity to probe the
very small and the very fast. Besides, nucleation in confined
environments is important for biological processes such as
bone formation [35,36], in vivo protein crystallization [37,38],
or cavitation in lipid bilayers [39], to name but a few. However,
CNT is based on assumptions that are violated for small
systems. For example, when the nucleation of a dense droplet
from a weak solution is considered, it is assumed that clusters
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do not consume enough material during nucleation so as to
have a noticeable effect on the properties of the mother phase,
but this can only be true for large systems. The main goal of this
work is therefore to extend dCNT to take into consideration
the conservation of mass required for a finite volume with the
aim of further developing the classical theory. Following a
similar procedure as that presented in a previous work [34], a
nucleation-rate equation is readily obtained. It turns out that the
confinement has a strong effect on the energy barrier and, thus,
on the nucleation rate. On the one hand, in contrast to infinite
systems, the cluster of a new phase can only grow to a certain
maximal size so that a complete phase transition is not possible.
Nevertheless, for sufficiently large and supersaturated systems,
this maximal cluster is indeed the stable, equilibrium state. In
contrast, if the system is too small, the maximal cluster size
is less than the critical radius and no transition takes place.
This indeed agrees with the supersaturation threshold found in
previous works devoted to study nucleation at fixed volumes
[40—45]. Such a system-size-dependent threshold has to be
overcome so that the phase transition can take place. In other
words, nucleation is found to be inhibited as a consequence of
the size of the container in which the experiment is being
carried out. On the other hand, nucleation rate is affected
for a certain range of volumes when we compare it with the
CNT prediction calculated for infinite systems [34]. Indeed,
such a ratio shows a maximum for system sizes close to that
which inhibits nucleation. Moreover, considerable corrections
arise when a more realistic model for clusters is taken into
consideration.

In Sec. II the order-parameter dynamics derived from
fluctuating hydrodynamics is modified so that the finite
volume limit is taken into account. It is shown that the
confinement does not affect the structure of the SDE derived
in Ref. [31]. The use of this SDE with a modified version of
the capillary model that accounts for the finite mass in the
system under study is presented in Sec. IIT A. In that section,
we give expressions for the attachment rate, the stationary
cluster-size distribution, the nucleation rate, and the growth
rate of supercritical clusters. Section IIIB focuses on the
improvement of those results by means of considering clusters
with a finite interfacial width. Three models are proposed: In
the first the inner density and the interfacial width are the same
as in the case of infinite systems, in the second the inner density
is chosen so as to minimize the free energy of the stable cluster,
and, last, in the third model, both the interior density and the
interfacial width are determined so as to minimize the free
energy of the stable cluster. While the first two models yield
similar results between them and to the capillary approach, the
last one gives rise to large deviations from the other models.
These comparisons are presented in Sec. IV. Finally, our results
are summarized in Sec. V.

II. THEORY

The approach we follow in this work is based on the recently
formulated MeNT [31] as applied to nucleation of colloids and
macromolecules in solution. The underlying model is based
on Brownian dynamics, where molecules move according to
Newton’s laws while being subject to a frictional force as well
as fluctuating forces. This is a simple model for colloids and the
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important case of macromolecules in solution in which cases
the friction and the fluctuations come from the bath or solvent
and has the virtue of allowing for useful simplifications.
MeNT addresses the problem of nucleation using fluctuating
hydrodynamics derived from this microscopic dynamics. It
shares common features with both DFT and dynamic DFT
(DDFT). However, DFT lacks dynamics and DDFT lacks
fluctuations and so is inapplicable to barrier crossing problems:
By beginning with the dynamics of fluctuations, MeNT
addresses both issues. Such a framework requires that a
spherical cluster be characterized by its density as a function of
distance from its center, p(r; x(¢)), where x represents a set of
one or more parameters describing the cluster, e.g., its radius,
interior density, etc. As indicated, these parameters can change
in time according to the following SDE [30-32], which is the
basis for this study,

dm(r;x(1)) ’ 3 8BFI[p]
— = DAmrep(r;x(1)) o —3,0(1') e

—VD8r2p(r;x()E(r; 1),

where m(r; x(¢)) stands for the mass inside a spherical shell,

m(rx(1)) = 4n / "o x(0) P2, ®)
0

and with D being the diffusion constant, F[p] being the
Helmholtz free energy, 8 = 1/kpgT, where kg is the Boltz-
mann constant and 7T is the absolute temperature, and where
&(r; 1) is a fluctuating force that fulfills

(s nE@'sth)) = 8(r — 3t —1). 3)

Note that square brackets in Eq. (1) have been used to indicate
a functional dependence. Finally, it has been shown that Eq. (1)
is It6-Stratonovich equivalent (see Appendix A of Ref. [31]),
so that either interpretation may be used.

The next step consists of deriving the dynamics of the
parameter vector, X(¢), in confined volumes, which will open
the door to reduced descriptions, specifically to single order-
parameter description.

A. Order-parameter dynamics in confined systems

The use of a finite number of scalar parameters (so-
called order parameters) to describe the density can be a
crude simplification but it is also a very useful method to
get an approximate representation of the whole problem.
Such a reduced description of the real density profile is
commonly used in the classical picture, where it is customary
to hypothesize that density fluctuations are well characterized
by a single order parameter, namely the size of the cluster.
While in CNT the order-parameter dynamics is formulated
based on heuristic reasoning, MeNT allows us to derive the
dynamical equations from a formal point of view, including the
case of more than one order parameter. Here, we briefly review
the arguments leading to the equations for the order parameter
in order to note the effect of imposing a finite volume.

022402-2



MESOSCOPIC NUCLEATION THEORY FOR CONFINED ...

From Eq. (1) the time-evolution equation governing the
order-parameter dynamics is given by

om(r;x(t)) dx,
0x; dl

= D4nr? p(r;x(1)) iw

ar dp(r)

—/D8mr2p(r;x(1))E(r;1).

Now let us assume that the container is a sphere of radius Ry.
The line of reasoning presented in Sec. III.B of Ref. ([31])
remains valid, although we have to take care of imposing the
right integration limits in order to consider the confinement.
Thus, the latter equation can be transformed into Eq. (5)
multiplying by a function W;(r;x(#)) and integrating up to
Ry,

p(rix(®)
“4)

Rt

dx;
g,j(x)d—i =D | Wisxa)ptix)

X (iSﬁF[p]) A r2dr
or dp(r) p(r3x(1))
Ry
a Wj(V;X(l)) D87T}"2p(r;x(t))€:(r;l)dr,
0
(5)
with
Ry P
8ij(x(1)) = W;(r;x (;))M ©)
0 1

It was argued (Sec. III.B and Appendix E of Ref. [31]) that the
optimal choice for W; is
1 am(r;x(t))

WilrxO) = ) ax 2

so that D;;(x) = 2Dg;;(x) and, eventually,

[ 1 dm(r;x(t)) dm(r; x(t))
8i/X) / drrlp(ryx(r))  dx; ax; . ®)

which is also called “the metric” [30,31,34]. The inverse of
this matrix is seen below to be interpretable as the matrix of
state-dependent kinetic coefficients. By using the definition of
W;(x) [Eq. (7)], the equation for the driving force (5) becomes

ke 9 8BFIp]

; W;(r:x(@)p(r; X(t)) o 8pr)

_ [am(r;x(t)) 36 Flo] T’
prx(@) Jg

0x; Sp(r)
B / dp(riX(1)) SPFlp]
r<Rp axj Sp(r)

wridr

p(r)

dr. )
p(r;x(1))

The first term gives a zero contribution atr = 0,and atr = Ry
the contribution will be

dIm(r;x(1)) 8BF[p]

oN
ax; 8p(r) = — u(p(Rr;x(1))), (10)

p(Rex)  0X)

which vanishes in closed systems for which the total number
of particles, N = m(Rr;X), is constant regardless the values
of the order parameters. The second term in Eq. (9) can be
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simplified by using the functional chain rule,

/ dp(r;x(1)) SBFp] _BFX)
r<Rr ax; Sp(r) o(rx(1)) ax;

. dn

where F'(x) has been used as the equivalent of F[p]. The latter
equations allow to rewrite the driving-force term of the SDE
(5) in a simpler manner that involves only partial derivatives.
The noise term is similarly simplified following Ref. [31] to
get

i peit 0N oD ax) - VEDg; EM),
dt 0x; Y
(12)
with ¢;;(X)g;(x) = g;;(x) and
A; (x)
g %) 1 &im (x)
=g (0 — ——>gi o 8mj (X)
J
+ 1[g‘1 (X) g5 ) — g7 (%) g, X ]
2 il gjm glj g
/RT 1 [8,0 (r;x) 0m (r;x) Om (r; x)]
X d
o 4mrip?(r;x) x; 0x; X,
(13)

This has exactly the same structure as the counterpart for open
systems except that the free energy that occurs here is the
Helmholtz free energy, while for open systems it is, naturally
enough, the grand potential. Hence, the confinement does not
alter the structure of the dynamics equations, as expected, but
it will play an important role when it comes to derive the exact
expressions of the cluster density profile, the free energy, and
the cumulative mass.

This framework is applied to make contact with the
classical picture but considering a finite mass and volume. The
following sections are intended to modify the capillary and
extended models discussed by Lutsko and Duran-Olivencia
[34] by enforcing the mass conservation law,

Ry
N = 4”/ o(r;x(1)) ridr, (14)
0

where N represents the total number of particles, also referred
as the “total mass,” which is strictly constant for a closed sys-
tem. To this end we particularize the general order-parameter
dynamics to a single order-parameter description, i.e., a one-
dimensional parametrization is considered. In contrast to CNT,
the chosen parameter may be indifferently the cluster size in
number of molecules or in radius, or even an abstract variable
to simplify the resulting SDE. Hereinafter we also specialize
to the case that the new phase is more dense than the old phase
(e.g., nucleation of liquid from gas), although the opposite
possibility (e.g., nucleation of gas from liquid) is very similar.

1. One-dimensional parametrization

For the simplest case of a single order parameter,

p(r;t) — p(r; X(1)), (15)
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it was shown [30-32] that Eq. (12) becomes

c;X De-'o0) BFX BEX) 1
t X

+ V2D g ' (X)§ (1), (16)

which constitutes the starting point of the dCNT. The metric
in this reduced description is a one-dimensional function of X,
whose definition according to Eq. (6) becomes

(R 1 am(r; X)7?
g(x)—/0 4m2p(r;X)[ 9x :|dr. (17)

*Z(X) 8g(X)

As for the cumulative mass, definition (2) remains unchanged
but now x(¢) = X(¢). That said, Eq. (12) is easily transformed
into a Fokker-Planck equation (FPE) determining the time
evolution of the probability density function (PDF) of the
random variable X [31,34,46,47],

o0P(X,1) _ _aﬁ(X,z)7 (18)
ot X
with
IBF(X
IX =~ [ 100 220
X
0
—1/2 9 12
g X-ve (X)} P(X.1)  (19)
_ 1/2
=_D{g—1(x>3[ﬁF(X) Ing'(X)]
X
+ o' poc (20)
8 ax )

being the probability flux, which has been written in two ways
to show the similarity with the Zeldovich-Frenkel equation [8—
10] of CNT. Indeed, the FPE determined by Egs. (18) and (20)
is formally equivalent to the Zeldovich-Frenkel equation when
X is the number of molecules inside a cluster, with Dg~'(X)
playing the role of the monomer-attachment rate and the free
energy shifted by a logarithmic termin g(X). It has been shown
[34] that the logarithmic term ensures the general covariance of
the dCNT. This means that when different equivalent choices
of the parameter X(¢) are possible (e.g., the mass or radius
of the cluster), the stochastic dynamics will be independent
of which parameter is used, a nontrival property that does not
occur naturally in the context of CNT.

While the general solution of Eq. (18) is a difficult problem,
a simple case admitting a solution is that of a stationary system
with const flux, J,, so that

_1, IBF(X)
Jo=-D|g (X
J [ X)—~— Ve
-1/2 d _ip
g (X)an (X) | P(X), 21
from which we readily obtain

— A gl/Z(X)e*BF(X)

~ X
- BP0t [ a2

Py(X)
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the steady-state solution, where A is a normalization constant
and is manifestly invariant under transformation of variables
[34]. If we consider that such a stationary nonzero flux is
ensured by removing clusters once they reach a given size X .,
the steady-state distribution must satisfy P;(X;) = 0. When
this condition is imposed, Eq. (22) becomes

Xy
1/2(X)e ﬁF(X)/ g

X

Py(X) = 12(x"ePFXDgx'.
(23)

For an undersaturated solution, equilibrium, of course, can
be identified with a particular value of the stationary flux,
namely, J; = 0. Thus, when the system is in an equilibrium
state (i.e., undersaturated) the PDF will be

Peq(X) =

= Aexp {—ﬂ |:F(X) - %kBT In g(X)]} . (24)

Ag'A(X)exp [-BF(X)]

2. Canonical form: The natural order parameter

Thus far, our concern was to use the mathematical tools of
the theory of stochastic processes in order to make contact with
CNT, which led us to derive an equation formally equivalent to
the Zeldovich-Frenkel equation. However, any single-variable
SDE with multiplicative noise (as the current case) can be
always transformed into a simpler one with additive noise via
the transformation of variable [34,46,47],

dy =/g(X)dX, (25)

with an arbitrary boundary condition that, for the sake of
simplicity, is taken to be Y (0) = 0. Such a “canonical variable”
is the most natural order parameter to be chosen in the case of
a one-dimensional parametrization of p(r;t), since Eq. (16) is
thereby simplified,

dy IBEY)
= —D— 2 +2DE&@), 26
P 7 + §(1) (26)
where F (Y) = F(X(Y)). As can be observed, such an equation
is It6-Stratonovich equivalent. The same goes for the FPE (18)
which becomes [34]

IP(Y.1) b0 [B,BF(Y)

ot Car| oy BY}P(YI) @7

with ﬁ(Y,t)d Y = P(X,t)dX. These equations will be very
useful when it comes to getting the nucleation rate, since they
notably simplify the calculations involved in the derivation.

3. Nucleation rate and mean first-passage time

In the previous study for infinite systems the (noncovariant)
nucleation rate was derived from classical arguments, yielding
the expression

_ Dpay
- X+ ’ / 8X" a
fx, Zoo(X") exp [BAQUX") — ln g(Xl)]dX

(28)

Within the range of applicability of CNT the logarithmic
corrections to the free energy are negligible [34], thus
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recovering the classical expression,

Dpay
X ! :
X1+ goo(X/)eﬁAQ(X )dX/

Jont = (29)

This essentially corroborates the well-known relationship
(e.g., Sec. 10.6 and Eq. 72 of Ref. [48]) between the nucleation
rate and the mean first-passage time (MFPT), hereafter
denoted as t and accompanied by a subscript to specify the
corresponding approach, when the nucleation barrier is high
enough,

Dpav ~ pav
X - ~
X|+ gOO(X/)eﬂAQ(X dx’

_ 1
~ pav Dg (AN,),/ - 1BAQL exp (=BAR),

(30)

Jont =
TCNT

where the infinite subscript has been used to remember that the
metric used here is that for an infinite system, Q = F — uN
is the grand canonical potential, X is the value of the order
parameter X for which the number of molecules inside the
cluster, AN, is set to be 1, X can be any value beyond the
critical size to enforce the stationary flux, and

BAL

*

ﬁAQ,(X*) =0,

(€1}
BAQ = BAQ'(X,).

Indeed, the MFPT can be directly identified as the time
required for the phase transition to start as long as the energy
barrier is not very low, since one supercritical cluster in the
whole system is enough to trigger the transition. In the opposite
case, the connection is not so clear due to the dependency of the
rate on barrier recrossing effects and on the initial condition.
However, those cases would imply effective supersaturation
values large enough to invalidate the hypotheses underlying
the general framework. That is why throughout this work we
assume that this connection is a good approximation within
the range of density values under study. Adapting the same
argument as led to (30), one can derive the escape rate for
confined systems,

. 1 2D
Jne = — =

Te [y g(X))ePAFXIGX!

1
~2Dg"(AN*),/ZIﬁAF;/IeXP(—ﬂAF*)- (32)

Note that in the following we do not distinguish between the
escape rate and the nucleation rate, as they are essentially the
same. This is ulteriorly compared to the classical estimation
[from Eq. (30)]. Such a ratio will give us a first idea of the
effect of the mass conservation.

Given that we are restricting attention to the evolution of
a single cluster which is not perturbed by any other clusters
within the system, it seems natural to focus on the escape rates.
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In our particular case the MFPT is given by

X, X /
T dx Po(x)/ dx’ g (x")ePF)
X

~ 2D J,
x / dx" g (x")e Pr", (33)
0

Considering the initial PDF, Py(X) = §(x), the latter equation
becomes

X, X,
T dx gl/z(x)e_ﬁF(x)/ dx’ g"?(x")ePF ).

- E 0 x
(34)

It is not generally possible to evaluate this expression analyti-

cally; however, we can make a good approximation of its value

with the aid of the canonical variable and assuming the free

energy admits the expansion, BF(Y) = BF(Y(0)) + Fo Y* +
- with some o > 0, so that it can be approximated as

BAF(Y) ~ FyY*® (35)
for small values of Y. Hence, by using the same method
explained in Appendix A of Ref. [34], the escape rate becomes

2D

' Jo " dx g 2(x)ePF) [ et gl (x ) F)

o By RrlpF ')l 17"k
1 T ¢

[T (Z) =T (3 Fore(x1)]

aF, /e
r(z)
Note that the tilde has been used to highlight that the expression
of the free energy is written in terms of the canonical variable.
Indeed, this equation can also be deduced from the dCNT
derivation by fixing the total number of clusters to be 1 in

the nucleation-rate equation. Besides, this approximation also
yields an approximated equation for the stationary distribution,

2D

~ 2D

1
/ ﬁ|ﬂF”<X*)|g-'<X*)e—W*. (36)

o Fl Ja

P~

()

The expression assumed in CNT for this quantity does not

include a size-dependent preexponential factor, i.e., PNT ~

e PAFX)  This peculiarity will be relevant when it comes

to understanding the ratio of the nucleation rates j/jen in
Sec. IV C and Fig. 4.

g'A(X)exp [-BAF(X)]. (37)

III. PARAMETRIZED PROFILES

The following section is devoted to particularize the
expressions derived above to some specific parametrizations.
We start with the capillary model, a crude model where even
the smallest clusters have zero interfacial width. Despite being
the simplest description of a density fluctuation, the capillary
approach results in a robust theory that captures the most
relevant aspects of the nucleation process. Thereafter, we test
the effect of considering a finite cluster width under the same
circumstances. When the capillary model is endowed with a
surface we call the resulting approach the “extended” model.

Our concern is the nucleation of a dense liquid droplet from
a weak solution at a given temperature, 7', with a finite number
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of particles (or total mass) N and total volume V7. The average
density of the initial vapor is then given by p,, = N/Vr. In
order to write the vapor density in a simpler way, we refer this
quantity to the coexistence vapor density for an infinite system
at the same temperature, which is denoted as p;°**. The liquid
density at the coexistence, p/°*, is then determined by the

conditions

a)(plc)oex) — C()(Iolcoex),
CL)/(,O;:OSX) — CL)/(,OICOEX), (38)

with w(p) = f(p) — np being the free energy per unit volume
and f(p) the Helmholtz free energy per unit volume. The ratio
Pav/Py>* plays a similar role as the supersaturation in ideal
systems; thus it is referred to as the effective supersaturation,
S.. For that reason, the initial density will be specified in terms

of the effective supersaturation since we adopt the convention,
Pav = plc}oex Se-

A. Modified capillary model

The capillary model used in CNT assumes that clusters
have no interfacial width and that they emerge with the same
properties as the bulk new phase. In short, that approach can
be mathematically expressed as

9 < R?
p(r; R, po) = {pO " (39)

Pexts T > R,

where R is the radius of the cluster, py is the density inside the
cluster, and pex; is the value of the density outside the cluster. In
the case of infinite systems, pext = Pqv and py is the bulk-liquid
density, which fulfills @'(p4,) = @'(p;). In contrast, a finite
system closed to matter exchange cannot reach this global
thermodynamic equilibrium but, rather, a stable state, which
will not fulfill the just mentioned equilibrium condition. This is
because the density of the vapor outside the cluster must drop
as the size and density of the cluster grows so as to maintain
a fixed number of molecules. Under these circumstances it
seems natural to select pg as the stable-state density, py;, which
yields a minimum of the Helmholtz free energy of the system,
F(p(r; R)) [Eq. (43)].

We have still to express the surrounding density, p,,, as
a function of the cluster size. Depending on the total size of
the system, the probability that several fluctuations coexist at
the same time will be negligible or not. In the case in which
only one density fluctuation lives in the system at a time (an
assumption always made within CNT), the result of applying
the mass conservation law [Eq. (14)] gives

Pav — 82(R)p0

1—-68%R) (“40)

pexl(R nOO) =
with §(R) = R/Ry. This equation explicitly shows that clus-
ters will perturb the surrounding density as long as the system is
small enough. From a straightforward calculation one observes
that pex(R) — pav a8 Ry — 00, which is in accordance with
the classical description. Combining Egs. (39) and (40), along
with pg = pss, we obtain the modified capillary model (MCM),

p(riR,po) = po OR — 1) + pexi(R,p0) O( — R),  (41)
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with ®(x) being the Heaviside step function. The Helmholtz
free energy of the system containing a fluctuation, 8 F (oo, R),
will have two contributions. The first one is due to the cluster
itself, and it is postulated to have the common volume-plus-
surface structure. The second one is due to the remaining
volume, with density pex(R,pp). Computing the difference
between this energy and that corresponding to the system with
no fluctuation, 8 F (p,y), one gets the work of cluster formation,

ABF(po.R) = BF(p0.R) — BF(pav)
4
= 7”1?3 [BF(00) — BS (Pext(R.p0))]

+47 R*By
+ [Bf (pext(R, 00)) — Bf (Par)] VT, — (42)

where y is the phenomenological surface tension. The last
term will play a key role in nucleation, since it is related with
the presence (or not) of a global minimum beyond the critical
size. In fact, this result was previously obtained by Reguera
et al. in their work on phase transitions in small systems by
using the modified liquid droplet model (Sec. II.B and Eq. 15
of Ref. [40]).

1. Critical and stable cluster

To characterize the critical cluster, we need to minimize the
free energy with respect to the cluster’s density and radius,

[%F(p,R) 3ﬁF(p,R)}
IR~ dp  Jr=r.

0, 43)
P=Pst

where Ry is the radius of the stable cluster. Use of Eq. (42)
then gives

47 R [ﬂf(pxz) - :Bf(pext(R*ypst))] _ —87‘[,3
1= (1= 82) B (pexa(Res psi)) 25525 | = 7P
(44)
Taking the limit Ry — oo, one readily gets
-2
: by 45)

- [ﬂf()ol) - ﬁf(pav)] - :Bf/(pav)(pl - pau)’

which shows the same structure as the equation for open
systems [12,13],

-2
RONT — By 46)

ﬂ@(PZ) - ﬂw(pav) .
These results clearly show an agreement with those predicted
by CNT, while extending them to situations where the confine-
ment can play a prominent role, e.g., inhibiting nucleation for
an average density which would proceed to nucleate in larger
systems.

2. Cumulative mass and metric

The MCM for the density profile gives cumulative mass
distribution (2),

m(r;R) = 47‘[/ o(r; R) r*dr’
0

4 4
= OR — 1= R'po
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AT s 3 p3
+O(r R)—3 [R°po + (r" — R”)pext(R)],
47)

with py = ps;. Using this, the metric can be obtained by
employing Eq. (47) in (17), with the result that

g(R) = g1,0,0(R) + go,1,0(R) + g0,0,1(R), (48)
with
47 R3 2
81,0,0(R) = ——— [pext(R) — po)” (1 = 6(R)] (49)
Pext(R)
(R) = 4JT_RZ R)
80.1,0(R) = T 3(R) [Pext(R) — po]
y (Rt — R)*(R7 + 2R) [ 3pexi(R)
Rt IR
3
2001(R) = XL [1 4 38(R) + 65(R) + 55 (R)]

. (R = R)’ [9pex(R) ?
Rr aR '

It is easy to check that go 1 0(R) and goo,1(R) tend to 1/Ry
when R < Ry, so they represent small corrections to the first
term g1,0,0(R). Thus, we recover the metric derived for infinite
systems [34] when that limit is considered. That fact leads us
to rewrite Eq. (48) as

2(R) 80,1,0(R) + 80,0,1(R):|

R)|1
81,0,0( )[ + 81,0,0(R)

81.0,0(R) x(R). (50)

As we discussed in Sec. II, the inverse of the metric plays a
similar role as the monomer attachment rate in the Zeldovich-
Frenkel equation when the order parameter is the number of
particles. To test this fact, we perform the change of variable,

4
AN = ?”RS[po — pexi(R)]. (51)

The metric is easily translated to the new variable,

dAN\?
g '(AN) = (W) g '(R(AN))

= {(AN)AT R(AN)pexi(R(AN)),  (52)

with
_ £0—Pav 53 AN 2
;(AN>=[ ”“f““_"*(;ﬁg)jv)( ) XN (R(AN)). (53)

It turns out that f(AN) = Dg~'(AN) has essentially the same
structure as the usual result for the monomer attachment rate
within the context of diffusion-limited nucleation: Indeed the
first converges to the second when Ry — oo. Note that here
C(AN) would be the counterpart of the phenomenological
sticking coefficient.
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3. Expansion of the canonical variable

With the aid of the expression of the metric we can look for
the canonical variable defined by (25),

, R 45 R3[pext(R) — pol?
Y(R) = 1—-6(R R)dR.
(R /0 \/ T [1—8(R)Ix(R)

(54)

However, the canonical variable is not an elementary function
of R due to the complexity of the integrand. Fortunately, the
practical interest on this variable resides in obtaining a first-
order approximation of the work of cluster formation and the
number of particles inside a cluster in the case of small clusters.
Under such circumstances one can consider §(R) ~ 0 as a good
approximation and, therefore, g(R) ~ g1.0.0(R). Thus,

1/2
Y(R) ~ g |:47T(,00 - pav)] R5/2
5 Pav

B —12)25
MDNEFﬂ%iﬁ}} s s

so that
ABF(Y) ~ 4By R*(Y)

1274/
~ 4nBy 3 Pav 4/
2 47 (po — Pav)

(56)

and

1/2) %3
Lav ] Y6/5.
47 (po — Pav)

AN 471( ) 5
3 Lo Pav )

(57

These expressions are used in the calculations of the nucleation
rate in order to make simpler the integrals involved [Eq. (36)],
with o = ‘5—‘ and where

5 ) 1214/
“:”W{ﬂaa:zﬂ }' Y

4. The stochastic differential equation
The SDE now becomes
dR

— _pe () !
=D (R [AﬂF(R)Jr 21ng(R>}

+V2D g (R)E(1). (59)

When the cluster and system are large enough, the SDE
converges to that derived by Lutsko and Duran-Olivencia
[34], which yields the classical result R ~ t!/2 when the
higher order terms in R~ are neglected [49]. In contrast, in
confined systems the result is very different when the cluster
is large compared to the total volume. In that situation, the
mass conservation law does not allow the cluster to grow
indefinitely, as it does in CNT and dCNT. Indeed, clusters
will not be able to grow beyond the stable size determined by
Eq. (43). Accordingly, the MCM is able to reproduce the slow
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down of the growth rate of postcritical clusters expected in a
confined system, unlike the classical theory.

B. Extended model
1. The profile and the metric

One of the most obvious deficiencies of the capillary
model is the zero-thickness interface assumed for clusters,
even for the smallest ones where most of molecules will
lie on the cluster surface. To circumvent such a limitation,
piecewise-linear profiles (PLPs) have been used in previous
works, [22,31,34], allowing thus a smooth transition from the
inner to the outer density value. We use the same idea to extend
the MCM profile as

Lo, < R—w,
p(r) =1 po— [P0 — Pexe(RI=E= R —w <r <R,
Pext(R), R <,
(60)
where the density out of the cluster is determined by the mass
conservation law,

Pav — [8(R) — Y (R; w)1po
1 —[83(R) — Y(R; w)]

A R*—(max(R—w),0)*
ca) — 4
V(R w) = wVy n (wfR)[R37(r;1ax(R7w,0))3] )

loext(R) =

(61)

so that m(R7)/ Vr = pay. The parameters py and w have to be
fixed according to some reasonable physical criterion. In order
to be consistent with the previous section, the inner density
will be set to minimize the free energy of the stable cluster.
Following the same reasoning, it seems natural to set the width
parameter as that fulfilling the same rule. To this end we need
to construct the free-energy model for the PLP [Egs. (60) and
(61)] and solve the three-dimensional root-finding problem,

[aﬁF(X)}
0X; X={Ry/, s, Wsr}

These do not permit an exact solution (see Appendix A) and
so will be solved numerically.

=0. (62)

2. Free-energy model

The aim of this work is ultimately to make a connection
with the calculations already performed for infinite systems.
Thus, the model for the free energy in the PLP approach is
constructed based on a simple [30]

1
Flpl = [ [f(p(r))+§K(Vp(r))2] i, (63)

where K is the squared-gradient coefficient that is estimated by
using the results of Ref. [30], and the Helmholtz free energy per
unit volume can be calculated based on a pair potential using
thermodynamic perturbation theory or liquid state integral
equation methods. Substituting the PLP into Eq. (63) yields

4 3
BAF(R,w) = T(maX(R —w,0))’BAS(po)

+[1 = 8 (R BAS (Pext(R)) Vr
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R
+ f 4r r? BAS
max(R—w,0)

r—R+w
X {:00 - [:00 _pexl(R)]T}dr
BK 47 5 Oy
>3 [R max(R — w,0)’]
2
% [pO_Pexl(R)j| , (64)
w

which equation has exactly the same structure as that derived
for infinite systems except for the second term, which accounts
for the confinement.

IV. RESULTS AND COMPARISONS

The theory previously presented was evaluated by consider-
ing a model of globular proteins, as was previously done in the
case of infinite systems. Thus, the solvent was approximated
by considering Brownian dynamics of the solute molecules
which simultaneously experience an effective pair potential
that we assumed to be the ten Wolde-Frenkel potential [50],

o0, r<o
6 3
s\lem] el ] e

with o = 50, which is then cut off at r. = 2.5 o and shifted so
that v(r,) = 0. With the aim to compare the results obtained
with the present theory with those reached for infinite systems
we fixed the temperature at kg7 = 0.375 €. The free-energy
density f(p) was computed using thermodynamic perturbation
theory. While we expect our results to be quite generic and
independent of details such as the choice of potential, they
would have to be reconsidered sufficiently near the critical
point that fluctuation renormalization was important. Finally,
the squared-gradient coefficient was calculated making use of
the results in Ref. [30], i.e.,

v(r) =

27 s o0 2 2
BK ~ _Ed Bu(r) +/d (Zd —5r )v(r)r dr, (66)
with d being the effective hard-sphere diameter. Under these
conditions, it was shown that the squared-gradient coefficient
is BK = 1.80322 0. Finally, the CNT value for the surface
tension was computed by using an expression for a planar
interface [34],

yont = (05°% — p5o™) /2K @™, (67)

coex
0

1 o
/ [a)(x) - w(ngex)]dx. (63)
0.

coeX __ ,coex .
(’0 0 Pay ) o

with

223:?36}& —

A. Work of cluster formation

The energy barrier for cluster formation is a key quantity
in nucleation theories as well as the comparison of its value
for different average densities or supersaturation values under
CNT conditions. In order to make contact with the results
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FIG. 1. (Color online) The free energy of cluster formation as a
function of number of molecules inside the cluster at S, = 1.125 in
a confined system of total volume, V; = 4.5 x 1003, using the
MCM with y being that calculated from infinite systems, and the
extended model, with which we tested different combinations of the
characteristic parameters po and w. This graph shows the fact that the
liquid phase is not stable so that nucleation will not proceed.

obtained for infinite systems, we use as an independent variable
the effective supersaturation, S,, which is the average density
divided by the coexistence density (for infinite systems) at
the given temperature. We evaluated the free-energy models
proposed in Sec. III for effective supersaturations from S =
1.125 to § = 2.5, thus covering a wide range of critical sizes,
from very large to very small.

The work of cluster formation was evaluated by using
Egs. (42) and (64) for the modified capillary and extended
models, respectively. Concerning the MCM, we fixed the sur-
face tension to equal the CNT value calculated in the previous
study for infinite systems [34], i.e., ¥ = ycnt. However, the
inner density pg was adjusted so as to minimize the free energy
of the stable cluster, p,,«» , unlike the classical capillary model
where the inner density is set to be the that of the new phase,
p1- As for the extended model considering the PLP, we studied
several possibilities to choose the characteristic parameters so
that we can see more easily the effects of the confinement, the
interior density, and the surface width. Thus, we tested three
different combinations of the values oy and w:

(a) set the density pp = p; and w = wq (from dCNT);

(b) set the density pg = Py and w = wo;

(c) look for the pair (o im, Wy i) to minimize the free
energy [Eq. (64)] of the stable cluster.

Figures 1 and 2 show the free-energy landscapes at S, =
1.125 and S, = 1.175,1.5,2.5, respectively. The reason why
the supersaturation values were divided into subsets is to
highlight the fact that nucleation is inhibited in the first case
while it still occurs in the other, as is obvious from these
figures. On the one hand, in both cases we can observe the
most important effect of considering confinement which is the
emergence of a local (stable or metastable) minimum beyond
the critical size as a result of finite mass. This is a property
which has no counterpart for an infinite system. Depending
on the total amount of material, such a minimum will become
metastable (Fig. 1) or stable (Fig. 2). On account of this fact,
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a new effect arises, namely the control on the nucleation rate
and the nucleation itself as a function of the total volume.
Indeed, with the volume previously specified at S, = 1.125 no
nucleation event will occur, given that the liquid (supposedly
the new phase) is not stable anymore. As we pointed out in
the Introduction, these results are in agreement with previous
works where nucleation in confined environments was studied
from different approaches, all reporting the existence of a
system-size supersaturation threshold [40—45]. On the other
hand, it is clear from those figures that the capillary model
with a fixed y produces results close to those obtained with
the extended models, at least up to S, = 1.5. In addition,
we observe how the interface width plays a key role in the
finite-width models lowering the energy of both the critical
and the stable cluster, since pg can > Py = p; (see Table I).
Indeed, what we found is that the width value which minimizes
the stable-cluster energy is about twice the value wy. There is
also observed a great similarity of these results with respect to
those for the infinite case, if we only pay attention to the left
column of Fig. 2. Finally, in view of these results an interesting
conclusion can be drawn in terms of experimental setups. The
control on the total volume enables to modulate the stability of
a given phase. This is an interesting result for crystallization
experiments in small volumes (e.g., microfluidics), since it
would imply that the effective solubility curve could be
controlled at will.

B. The stationary distribution

A straightforward connection with experimental measure-
ments can be made via the PDF, which is essentially the
quantity obtained by techniques like dynamic light scattering
(DLS). [51]. Thus, the stationary PDF offers us another way to
test the theories presented above. In addition, this quantity
is required both in its exact [Eq. (23)] and approximated
[Eq. (37)]form so as to determine the nucleation rate and
so we need to test its validity. In order to do that, we have
to compute the PDF for the different models in terms of a
common variable since R does not mean the same thing in both
of them, as we already pointed out. Thus, the calculations are
performed using the equimolar radius, R, which requires the
transformation,

dR

P(Rg) = P(R) iR

(69)
with Rg being equivalent to R for the MCM or being given by
Eq. (A9) for the PLP.

The stationary size distributions are displayed in Fig. 3,
showing good agreement with the results for the infinite
case. The shape of the PDF is faithfully reproduced by
the approximated equation [Eq. (24)], at least for the lower
effective supersaturations (left and center panels). However,
the normalization is not equally well estimated, which is
a result of the rapid change of the free energy with the
cluster size for small clusters. Second, while for the MCM the
approximation still remains a good estimation for the highest
density (S, = 2.5), a significant error arises for the extended
models. The worse result lies on the extended model with a
minimized stable cluster due to the fact that the system is
in the pseudospinodal region [52], i.e., BAF, ~ 1, so that
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FIG. 2. (Color online) The Helmholtz free energy as a function of cluster size, AN, at S =1.175,1.5, and 2.5 for different cluster
models. The panels in the left column (a),(b),(c) are magnifications of the panels in the right column (d),(e),(f) about the critical size at each
supersaturation. The right column shows the existence of a stable size behind which the energy of formation rockets. The total volume is again

Vr =45 x 10573,

the assumption that small sizes govern the integral result
is quite crude. Indeed, for these density values one would
expect that cluster-cluster interactions play a key role, thus
violating the hypotheses assumed to make these calculations,
as was noticed for infinite systems. Notwithstanding, we
conclude that the capillary model exhibits a surprising ability
to capture the main properties of nucleation even for finite
systems.

C. Nucleation rates

We end by comparing the nucleation (escape) rates in the
different models previously introduced as shown in Table I. It
is apparent that for the lower densities the nucleation rates are
much lower for the extended models with w taken from dCNT
calculations than for the capillary model, which is essentially
due to the higher energy barrier associated with both of them.
On the other hand, one observes the opposite situation when the
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FIG. 3. (Color online) The stationary size distribution for the supersaturation values under which nucleation can proceed, S, = 1.175 (a),
S, = 1.5 (b), and S, = 2.5 (c), with V; = 4.5 x 10% 3 and R, = 1.5R,.

extended model with a minimized stable cluster is considered,
since the energy barrier is lower than that of the MCM
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FIG. 4. (Color online) Nucleation rates as functions of the total
volume at S, = 1.5. The extended models considered here are (1)
considering py = P and w = wy and (2) taking py = p,i» and
w = Wyeip, 1.e., those values which minimize the stable-cluster
energy. It is observed how the confinement takes effect in a very
narrow region, resulting in a maximum nucleation rate before
inhibiting the process.

(see Fig. 2). For the other cases the capillary approximation
yields similar results to the extended models and to the CNT
predictions. Next, we consider the variation of the nucleation
rate as a function of volume. For the sake of simplicity, since a
similar result in shape is obtained for each density, we selected
S, = 1.5. This calculation is shown in Fig. 4. One could expect
the ratio j/j.,, goes to one as the system size grows, but it is
apparent it does not happen. The reason consists of two effects.
First, the preexponential factor g'/? in the covariant expression
for the stationary PDF [Eq. (37)] creates numerical effects
that persist at all sizes. Second, the covariant rate equation
[Eq. (36)] shows a splitting up of the factor of g that also
causes persistent differences between j and j.,,. Aside from
this scaling effect, a surprising outcome is observed near the
zero-rate zone, the nucleation rate exhibits a maximum for
very small volumes and after that relaxes quickly to a steady
value, which is nearly the one presented in Table 1. This is
the result of a competition between two effects. On the one
hand, the inner density of the cluster decreases with increasing
total radius so that the bulk free energy increases. On the
other hand, the free energy associated to the zone outside
the cluster decreases when the total volume increases. It is
therefore such a competition which causes a minimum in
free-energy barrier and, hence, the maximum in nucleation
rate. Before that maximum, the nucleation rate passes from
being zero to nonzero in a very narrow region. From this result
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we can draw the conclusion that confined systems could be
pretty well approximated by the infinite-system predictions,
unless the volume under consideration is very close to the
minimum volume for nucleation.

V. CONCLUSIONS

In this work, a recent reformulation of CNT [34] has been
extended to consider finite systems. The motivation for making
such an effort arises from the explosion of interest in nucleation
process by using new techniques, such as microfluidics,
where the hypotheses made by CNT are probably far from
reality. Given that the dynamical reformulation of CNT was
founded in a more fundamental framework, it was relatively
easy to modify its derivation to take into account the mass-
conservation law along with a finite volume and to go beyond
the initial scope of CNT. With this goal attained, general
expressions for both the stationary distribution function and
the nucleation rate were obtained. Those were ultimately used
with two different parametrized density profiles, a modified
version of the capillary model to consider mass conservation
and a PLP. Thus, the results obtained thereby make it possible
to make a direct comparison to those performed for infinite
systems.

The main conclusion we can draw from this study is that
the nucleation rate can be somehow enhanced in a confined
system. However, confinement affects in practice a very narrow
range of volumes which is also why CNT produces good
estimates. Surprisingly, the different profiles proposed here
gave similar results where the main difference between them
lies on the free-energy barrier, as it also does for infinite
systems. That said, it seems to us that the most natural way
to further develop dCNT would be allowing the inner density
to freely vary within the capillary model, which seems a good
balance between being simple and accurate.

The nucleation rates were calculated in terms of the
MFPT [53-55], which has been a widely used approach in
this field. These calculations involved similar ingredients to
those required to compute the stationary distribution function.
The latter was evaluated numerically [Eq. (23)] and by
using its approximated version [Eq. (37)]. A good agreement
between exact and approximated expressions was found for
low and intermediate densities, while for higher values the
approximation became less accurate. Therefore, the same can
be observed in the nucleation rates in Table I. However, the
fact that high densities yield worse approximations is not a
key problem since certainly in such a regime the hypothesis of
noninteracting clusters will be unlikely valid anymore.

Finally, the volume of the system under study was varied
in a wide range to study the effect on the nucleation rate. It
was found that the finite volume effect is only noticeable for
a narrow range of volumes and that it rapidly vanishes as the
volume grows so that CNT and dCNT are accurate above this
threshold.
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APPENDIX: CALCULATIONS FOR THE
PIECEWISE-LINEAR PROFILE

1. The cumulative mass and metric

Conforming to the postulated PLP, the cumulative mass can
be computed for 0 < R < w,

m(r) = O(R — i’)%[po — pea(R)IFP AR = 3r)

+ 00 = R)3-[p0 — pen( MR’
w
+ V() pexi(R), (A1)
while for R > w it becomes
m(r) = O(R —w —r)V(r)loo — pext(R)]
+0O[r —(R—w)]O(R —7r)

X 31[po — Pext(R)I[F* (4R — 3r) — (R — w)*]
w

T 4 4
+0O0r — R)ﬁ[po — Pext(R)][R" — (R — w)”]
+ V() pexi(R), (A2)

with V(r) = 4T”r3. According to these equations, the metric

will present two contributions for those clusters with0 < R <
w and three addends when R > w. In the first case,

g(R) = &i(R) + gou(R), 0< R < w, (A3)
with
R 1
gi(R) = / —w
o 4rr?{po — [po — peu(R)] =22}
- 2
200 — pea(R)]
x 4 —Z@R -3’ b gy,
+ V(r) 2ol
(A4)
Ry 1
Zout(R) = / ——
t R AT pe(R)
- 2
ZR3[po — pext(R)]
x 1 — EZRH2R dr.
+ V(r)—gpg;gm
(A5)

The first term concerns the cluster surface and the second
one affects to the outside mass. Although the exact solution
exists and can be computed for these integrals, they are very
crude. Fortunately, we are interested in obtaining an analytical
approximation of the metric with the aim of calculating a first-
order approximation of Y for small clusters. In this limit, it is a
good estimation to consider pex((R) ~ p4y and dpex(R)/OR ~
0, giving rise to the expression already obtained for infinite
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systems,

_ 2 p5
g(R<w)~8_7T<M> R_ (A6)

15 w Pav

The goodness of this approximation will be ultimately checked
by comparison with the numerical results. For R > w it also
becomes an intractable equation whose solution is extremely
crude. Thus, writing it down would be meaningless since
our interest in the metric expression relies on finding an
approximation of this quantity for small clusters.

Once again, a canonical variable can be defined and it can
be expanded about small clusters,

R
Y(R) ~ / VeR < w)dR'
0

2 (00— par\ | 8
~ (P TR, (A7)
7 w 15040

where the approximation (A6) has been used. Given that
quantity, now we can get the approximation for the excess
number of molecules in the cluster, as we did previously.
However, here AN has to be evaluated carefully as there is no
a simple relation with R as in the MCP, but with the equimolar
radius R,

Ry 4 5
AN = / [o(r) — pexi(R)]dr = TR;E [P0 — pext(R)],
0

(A8)

which in the case of the MCP is equivalent to R. After some
manipulations one arrives at

R} = {L[R4 — (max(R — w,O))4]}. (A9)

4w

Therefore, the excess number of molecules will satisfy the
following approximation for small clusters,

8/7
4 117 w 15040
AN ~ —(pg — — | = .
3 (;00 pav)4w |:2 <p0 — pav) 87 :|

(A10)

2. Free energy

Now, as in the case of the metric, the work of cluster
formation will have two different expressions depending on
whether R > w or 0 < R < w. Fortunately, an exact equation
can be found in both cases, unlike for the metric. For R > w
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Eq. (64) becomes
4 3
ABF (R w) = ?(R —w)' B Lf(po) — f(pav)]

+ 1 = (R BLf (pexe(R)) — f(pav)] Vr

_ 2
+4nB 1 9o(R)w + K—['O0 5;2(((1?)] } R?

[P0 — Pext(R)I? } R
2w

—4nB 12¢(R)w + K

+4nB o (R)w + K

’

(Al1)

oo — pext(R)]2 } w?
6w

with

S7 oy L) = F(pa)] [x = pexd(R)]* dx
_— R, — ext .
Pulfsw) [P0 — pea(R)FFHT

(A12)

It is easy to check that these expressions tend to their infinite-
system counterparts when the corresponding limit is taken into
account. Besides, the model reproduces the same similarity
when the small cluster limit is imposed, i.e., for R < w,

BAF(R;w) = [1 — 8 (R)] BLf (pext(R)) — f(Par)] Vr

R
—i—/ 47 r?
0

r—R+w
X BAS 1P — [po — pext(R)]T dr
2 — pext(R) T
3 w
which can be eventually approximated by
27 (o= Pav\’
BAF(R;w) ~ BK = <°—> R
3 w
2m po = Pav\’
~ —/3K < 0 av)
3 w
6/7
« z w 1504y Y6/7,
2 L0 — Pav 8
(Al14)

an equation which will be used to compute the nucleation rate
subsequently, by using equation (36) with o = % and

5 6/7
}":10 _ 2_7'['31( £0 — Pav z w 1504y )
3 w 2 L0 — LPav 8

(A15)

[1] J. W. Gibbs, On the equilibrium of heterogeneous substances,
Trans. Conn. Acad. Arts Sci. 3, 108 (1878).

[2] J. W. Gibbs, On the equilibrium of heterogeneous substances,
Trans. Conn. Acad. Arts Sci. 3, 343 (1878).

[31J. W. Gibbs, H. A. Bumstead, R. G. V. Name, and
W. R. Longley, The Collected Works of J. Willard
Gibbs: (Longmans, Green, London,
1931).

Thermodynamics

022402-14



MESOSCOPIC NUCLEATION THEORY FOR CONFINED ...

[4] M. Volmer and A. Weber, Nuclei formation in supersaturated
states (transl.), Z. Phys. Chem. 119, 227 (1926).

[5] M. Volmer, Kinetik der phasenbildung, Chemische Reaktion
(J. W. Edwards, Ann Arbor, M1, 1939).

[6] L. Farkas, The speed of germinitive formation in supersaturated
vapours (transl.), Z. Phys. Chem. 125, 236 (1927).

[71 R. Becker and W. Doring, Kinetic treatment of grain-
formation in super-saturated vapours, Ann. Phys. 24, 719
(1935).

[8] I.J. Frenkel, Kinetic Theory of Liquids (Oxford University Press,
Oxford, UK, 1946).

[9] I. J. Frenkel, Statistical theory of condensation phenomena, J.
Chem. Phys. 7, 200 (1939).

[10] J. B. Zeldovich, On the theory of new phase formation, Acta
Physicochim. (URSS) 18, 1 (1943).

[11] D. Turnbull and J. C. Fisher, Rate of nucleation in condensed
systems, J. Chem. Phys. 17, 71 (1949).

[12] D. Kashchiev, Nucleation: Basic Theory with Applications
(Butterworth-Heinemann, Elsevier Science, Oxford, UK, 2000).

[13] K. Kelton and A. L. Greer, Nucleation in Condensed Matter:
Applications in Materials and Biology, Pergamon Materials
Series (Elsevier Science, Oxford, U.K., 2010).

[14] Y. Viisanen, R. Strey, and H. Reiss, Homogeneous nucleation
rates for water, J. Chem. Phys. 99, 4680 (1993).

[15] Y. Viisanen and R. Strey, Homogeneous nucleation rates for
n-butanol, J. Chem. Phys. 101, 7835 (1994).

[16] J. Hruby, Y. Viisanen, and R. Strey, Homogeneous nucleation
rates for n-pentanol in argon: Determination of the critical cluster
size, J. Chem. Phys. 104, 5181 (1996).

[17] B. Shizgal and J. C. Barrett, Time dependent nucleation, J.
Chem. Phys. 91, 6505 (1989).

[18] D. Kashchiev, Nucleation at variable supersaturation, Surf. Sci.
18, 293 (1969).

[19] R. Kaichew and I. N. Stranski, On the theory of linear
crystallization velocity (transl.), Z. Phys. Chem. B 26, 317
(1934).

[20] N. N. Tunitskii, On the condensation of supersaturated vapors
(tranl.), Zh. Fi. Khim. 15, 1061 (1941).

[21] K. F. Kelton, Crystal nucleation in liquids and glasses, in
Solid State Physics, edited by H. Ehrenreich and D. Turnbull
(Academic Press, New York, 1991), pp. 75-178.

[22] J. F. Lutsko, Density functional theory of inhomogeneous
liquids. iv. squared-gradient approximation and classical nu-
cleation theory, J. Chem. Phys. 134, 164501 (2011).

[23] A. Laio S. Prestipino, and E. Tosatti, Systematic improvement
of classical nucleation theory, Phys. Rev. Lett. 108, 225701
(2012).

[24] C. Dellago W. Lechner, and P. G. Bolhuis, The role of the
prestructured surface cloud in crystal nucleation, Phys. Rev.
Lett. 106, 085701 (2011).

[25] J. S Langer, Theory of the condensation point, Ann. Phys. 41,
108 (1967).

[26] J. S. Langer, Statistical theory of the decay of metastable states,
Ann. Phys. 54, 258 (1969).

[27] J. Lothe, Simplified considerations of the onsager symmetry in
the general diffusion equation of nucleation theory, J. Chem.
Phys. 45, 2678 (1966).

[28] D. Reguera, J. M. Rubi, and A. Prez-Madrid, Kramers-type
picture for crystal nucleation, J. Chem. Phys. 109, 5987
(1998).

PHYSICAL REVIEW E 91, 022402 (2015)

[29] Robert McGraw, Dynamics of barrier crossing in classical
nucleation theory, J. Phys. Chem. B 105, 11838 (2001).

[30] J. F. Lutsko, A dynamical theory of homogeneous nucleation
for colloids and macromolecules, J. Chem. Phys. 135, 161101
(2011).

[31] James F. Lutsko, A dynamical theory of nucleation for colloids
and macromolecules, J. Chem. Phys. 136, 034509 (2012).

[32] J. E. Lutsko, Nucleation of colloids and macromolecules: Does
the nucleation pathway matter?, J. Chem. Phys. 136, 134502
(2012).

[33] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Elsevier
Science, Amsterdam, 1959), Vol. 6.

[34] J. E. Lutsko and M. A. Duran-Olivencia, Classical nucleation
theory from a dynamical approach to nucleation, J. Chem. Phys.
138, 244908 (2013).

[35] B. Cantaert, E. Beniash, and F. C. Meldrum, Nanoscale
confinement controls the crystallization of calcium phosphate:
Relevance to bone formation, Chem. Eur. J. 19, 14918 (2013).
ISSN 1521-3765.

[36] J. Gémez-Morales, M. lafisco, J. M. Delgado-Lpez, S. Sarda,
and C. Drouet, Progress on the preparation of nanocrystalline
apatites and surface characterization: Overview of fundamental
and applied aspects, Prog. Cryst. Growth Charact. Mater. 59, 1
(2013).

[37] D. B. Bechtel and L. A. Bulla, Electron microscope study
of sporulation and parasporal crystal formation in bacillus
thuringiensis, J. Bacteriol. 127, 1472 (1976).

[38] R. Koopmann, K. Cupelli, L. Redecke, K. Nass, D. P. DePonte,
T. A. White, F. Stellato, D. Rehders, M. Liang, J. Andreasson
et al., In vivo protein crystallization opens new routes in
structural biology, Nat. Methods 9, 259 (2012).

[39] S. P. Wrenn, E. Small, and N. Dan, Bubble nucleation in lipid
bilayers: A mechanism for low frequency ultrasound disruption,
Biochim. Biophys. Acta, Biomembr. 1828, 1192 (2013).

[40] D. Reguera, R. K. Bowles, Y. Djikaev, and H. Reiss, Phase
transitions in systems small enough to be clusters, J. Chem.
Phys. 118, 340 (2003).

[41] J. Wedekind, D. Reguera, and R. Strey, Finite-size effects
in simulations of nucleation, J. Chem. Phys. 125, 214505
(20006).

[42] ¢ Wilhelmsen, D. Bedeaux, S. Kjelstrup, and D. Reguera,
Communication: Superstabilization of fluids in nanocontainers,
J. Chem. Phys. 141, 071103 (2014).

[43] D. Calecki, D. Lederer, B. Roulet, B. Diu, and C. Guthmann,
Fixed volume versus fixed pressure liquid-vapor transition, Am.
J. Phys. 78, 1316 (2010).

[44] R. Grossier and S. Veesler, Reaching one single and stable
critical cluster through finite-sized systems, Cryst. Growth Des.
9, 1917 (2009).

[45] S. Prestipino and P. V. Giaquinta, Spontaneous freezing of
supercooled water under isochoric and adiabatic conditions, J.
Phys. Chem. B 117, 8189 (2013).

[46] H. Risken, The Fokker-Planck Equation, 2nd ed. (Springer,
Berlin, 1996).

[47] C. W. Gardiner, Handbook of Stochastic Methods (Springer,
Berlin, 2004).

[48] J. L. Barrat and J. P. Hansen, Basic Concepts for Simple and
Complex Liquids (Cambridge University Press, 2003).

[49] Y. Saito, Statistical Physics of Crystal Growth (World Scientific,
Singapore, 1998).

022402-15


http://dx.doi.org/10.1063/1.1750413
http://dx.doi.org/10.1063/1.1750413
http://dx.doi.org/10.1063/1.1750413
http://dx.doi.org/10.1063/1.1750413
http://dx.doi.org/10.1063/1.1747055
http://dx.doi.org/10.1063/1.1747055
http://dx.doi.org/10.1063/1.1747055
http://dx.doi.org/10.1063/1.1747055
http://dx.doi.org/10.1063/1.466066
http://dx.doi.org/10.1063/1.466066
http://dx.doi.org/10.1063/1.466066
http://dx.doi.org/10.1063/1.466066
http://dx.doi.org/10.1063/1.468208
http://dx.doi.org/10.1063/1.468208
http://dx.doi.org/10.1063/1.468208
http://dx.doi.org/10.1063/1.468208
http://dx.doi.org/10.1063/1.471145
http://dx.doi.org/10.1063/1.471145
http://dx.doi.org/10.1063/1.471145
http://dx.doi.org/10.1063/1.471145
http://dx.doi.org/10.1063/1.457366
http://dx.doi.org/10.1063/1.457366
http://dx.doi.org/10.1063/1.457366
http://dx.doi.org/10.1063/1.457366
http://dx.doi.org/10.1016/0039-6028(69)90172-1
http://dx.doi.org/10.1016/0039-6028(69)90172-1
http://dx.doi.org/10.1016/0039-6028(69)90172-1
http://dx.doi.org/10.1016/0039-6028(69)90172-1
http://dx.doi.org/10.1063/1.3582901
http://dx.doi.org/10.1063/1.3582901
http://dx.doi.org/10.1063/1.3582901
http://dx.doi.org/10.1063/1.3582901
http://dx.doi.org/10.1103/PhysRevLett.108.225701
http://dx.doi.org/10.1103/PhysRevLett.108.225701
http://dx.doi.org/10.1103/PhysRevLett.108.225701
http://dx.doi.org/10.1103/PhysRevLett.108.225701
http://dx.doi.org/10.1103/PhysRevLett.106.085701
http://dx.doi.org/10.1103/PhysRevLett.106.085701
http://dx.doi.org/10.1103/PhysRevLett.106.085701
http://dx.doi.org/10.1103/PhysRevLett.106.085701
http://dx.doi.org/10.1016/0003-4916(67)90200-X
http://dx.doi.org/10.1016/0003-4916(67)90200-X
http://dx.doi.org/10.1016/0003-4916(67)90200-X
http://dx.doi.org/10.1016/0003-4916(67)90200-X
http://dx.doi.org/10.1016/0003-4916(69)90153-5
http://dx.doi.org/10.1016/0003-4916(69)90153-5
http://dx.doi.org/10.1016/0003-4916(69)90153-5
http://dx.doi.org/10.1016/0003-4916(69)90153-5
http://dx.doi.org/10.1063/1.1727991
http://dx.doi.org/10.1063/1.1727991
http://dx.doi.org/10.1063/1.1727991
http://dx.doi.org/10.1063/1.1727991
http://dx.doi.org/10.1063/1.477224
http://dx.doi.org/10.1063/1.477224
http://dx.doi.org/10.1063/1.477224
http://dx.doi.org/10.1063/1.477224
http://dx.doi.org/10.1021/jp011914q
http://dx.doi.org/10.1021/jp011914q
http://dx.doi.org/10.1021/jp011914q
http://dx.doi.org/10.1021/jp011914q
http://dx.doi.org/10.1063/1.3657400
http://dx.doi.org/10.1063/1.3657400
http://dx.doi.org/10.1063/1.3657400
http://dx.doi.org/10.1063/1.3657400
http://dx.doi.org/10.1063/1.3677191
http://dx.doi.org/10.1063/1.3677191
http://dx.doi.org/10.1063/1.3677191
http://dx.doi.org/10.1063/1.3677191
http://dx.doi.org/10.1063/1.3698603
http://dx.doi.org/10.1063/1.3698603
http://dx.doi.org/10.1063/1.3698603
http://dx.doi.org/10.1063/1.3698603
http://dx.doi.org/10.1063/1.4811490
http://dx.doi.org/10.1063/1.4811490
http://dx.doi.org/10.1063/1.4811490
http://dx.doi.org/10.1063/1.4811490
http://dx.doi.org/10.1002/chem.201302835
http://dx.doi.org/10.1002/chem.201302835
http://dx.doi.org/10.1002/chem.201302835
http://dx.doi.org/10.1002/chem.201302835
http://dx.doi.org/10.1016/j.pcrysgrow.2012.11.001
http://dx.doi.org/10.1016/j.pcrysgrow.2012.11.001
http://dx.doi.org/10.1016/j.pcrysgrow.2012.11.001
http://dx.doi.org/10.1016/j.pcrysgrow.2012.11.001
http://dx.doi.org/10.1038/nmeth.1859
http://dx.doi.org/10.1038/nmeth.1859
http://dx.doi.org/10.1038/nmeth.1859
http://dx.doi.org/10.1038/nmeth.1859
http://dx.doi.org/10.1016/j.bbamem.2012.12.017
http://dx.doi.org/10.1016/j.bbamem.2012.12.017
http://dx.doi.org/10.1016/j.bbamem.2012.12.017
http://dx.doi.org/10.1016/j.bbamem.2012.12.017
http://dx.doi.org/10.1063/1.1524192
http://dx.doi.org/10.1063/1.1524192
http://dx.doi.org/10.1063/1.1524192
http://dx.doi.org/10.1063/1.1524192
http://dx.doi.org/10.1063/1.2402167
http://dx.doi.org/10.1063/1.2402167
http://dx.doi.org/10.1063/1.2402167
http://dx.doi.org/10.1063/1.2402167
http://dx.doi.org/10.1063/1.4893701
http://dx.doi.org/10.1063/1.4893701
http://dx.doi.org/10.1063/1.4893701
http://dx.doi.org/10.1063/1.4893701
http://dx.doi.org/10.1119/1.3480027
http://dx.doi.org/10.1119/1.3480027
http://dx.doi.org/10.1119/1.3480027
http://dx.doi.org/10.1119/1.3480027
http://dx.doi.org/10.1021/cg801165b
http://dx.doi.org/10.1021/cg801165b
http://dx.doi.org/10.1021/cg801165b
http://dx.doi.org/10.1021/cg801165b
http://dx.doi.org/10.1021/jp403332y
http://dx.doi.org/10.1021/jp403332y
http://dx.doi.org/10.1021/jp403332y
http://dx.doi.org/10.1021/jp403332y

MIGUEL A. DURAN-OLIVENCIA AND JAMES F. LUTSKO

[50] P. R. ten Wolde and D. Frenkel, Science 277, 1975
(1997).

[51] B. J. Berne and R. Pecora, Dynamic Light Scattering:
With Applications to Chemistry, Biology, and Physics,
Dover Books on Physics Series (Dover, Mineola, NY,
2000).

[52] X. Xu, C. L. Ting, I. Kusaka, and Z.-G. Wang, Nucleation in

polymers and soft matter, Annu. Rev. Phys. Chem. 65, 449
(2014).

PHYSICAL REVIEW E 91, 022402 (2015)

[53] P. Hanggi, P. Talkner, and M. Borkovec, Reaction-rate theory:
Fifty years after Kramers, Rev. Mod. Phys. 62, 251 (1990).

[54] J. Wedekind, R. Strey, and D. Reguera, New method to analyze
simulations of activated processes, J. Chem. Phys. 126, 134103
(2007).

[55] S. E. M. Lundrigan and I. Saika-Voivod, Test of classical nucle-
ation theory and mean first-passage time formalism on crystal-
lization in the Lennard-Jones liquid, J. Chem. Phys. 131, 104503
(2009).

022402-16


http://dx.doi.org/10.1126/science.277.5334.1975
http://dx.doi.org/10.1126/science.277.5334.1975
http://dx.doi.org/10.1126/science.277.5334.1975
http://dx.doi.org/10.1126/science.277.5334.1975
http://dx.doi.org/10.1146/annurev-physchem-032511-143750
http://dx.doi.org/10.1146/annurev-physchem-032511-143750
http://dx.doi.org/10.1146/annurev-physchem-032511-143750
http://dx.doi.org/10.1146/annurev-physchem-032511-143750
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1063/1.2713401
http://dx.doi.org/10.1063/1.2713401
http://dx.doi.org/10.1063/1.2713401
http://dx.doi.org/10.1063/1.2713401
http://dx.doi.org/10.1063/1.3216867
http://dx.doi.org/10.1063/1.3216867
http://dx.doi.org/10.1063/1.3216867
http://dx.doi.org/10.1063/1.3216867



