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Abstract The nonlinear theory of anomalous diffusion is based on particle interactions
giving an explicit microscopic description of diffusive processes leading to sub-, normal, or
super-diffusion as a result of competitive effects between attractive and repulsive interactions.
We present the explicit analytical solution to the nonlinear diffusion equation which we then
use to compute the correlation function which is experimentally measured by correlation
spectroscopy. The theoretical results are applicable in particular to the analysis of fluorescence
correlation spectroscopy of marked molecules in biological systems. More specifically we
consider the cases of fluorescently labeled lipids in the plasma membrane and of fluorescent
apoferritin (a spherically shaped oligomer) in a crowded dextran solution and we find that
the nonlinear correlation spectra reproduce very well the experimental data indicating sub-
diffusive molecular motion.

Keywords Nonlinear diffusion - Sub- and super-diffusion - Fluorescence correlation
spectroscopy - Membrane protein diffusion

1 Classical Diffusion and Anomalous Diffusion

There are many systems observed in nature and in the laboratory where it seems natural to
use the language of diffusion, but where one finds that the space or time dispersion of the
diffusing objects do not obey the classical diffusion equation, which is an indication that the
objects do not move “freely”: obstacles, time delays, interactions can modify their trajectories
in such a way that their mean squared displacement deviates from the classical linear law
(r?) ~ t and the Gaussian structure of the dispersion is deformed or replaced by a different
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distribution. Such non-classical distributions with non-exponential behavior are generally the
signature of anomalous diffusion and the mean squared displacement then follows a power
law in the time variable: (+2) ~ ¥ with 0 < y # 1 (while y = 1 for regular diffusion).
Depending on whether y < 1 or y > 1, one talks about sub-diffusion when the particles are
e.g. delayed in their diffusive motion by the presence of obstacles or because of the structural
complexity of the medium or because of molecular interactions, and super-diffusion when
their motion is e.g. enhanced by concentration effects or by an external field.

Fundamental constraints in constructing a theory of anomalous diffusion are then needed
to reproduce a mean-squared displacement that exhibits power-law behavior as a function of
time and the fundamental demand for the existence of self-similar solutions, i.e. such that all
moments scale similarly, (r>") ~ ¥ . This implies that the distribution should have the form
fr, 1) = t’V/2¢(r/tV/2) for some function ¢ (x) (as is the case for classical diffusion).

In Einstein’s random walk model [1], the jumps can extended to lengths greater than
one with different probabilities including rests (jumps of length zero) without affecting the
diffusive nature of the process. Generally, diverse microscopic dynamics can give rise to
“diffusion” phenomena at the macroscopic level, but the underlying mechanisms may be
quite different; for instance the distinction should be made between molecular diffusion
of tagged particles which, while identical to the medium particles, are made observable
by radioactive or fluorescent markers [2,3] and tracer diffusion where experimentally one
follows trajectories of distinguishable particles seeded in an active medium [4,5].

Various approaches for a general description of diffusive phenomena have been developed
in the past few years. They can be divided into three classes:

(i) the fractional Fokker—Planck equation (FFPE) is based on the continuous time random
walk model with a power law ansatz for the distribution of the time delays in the motion
of the particles [6] and describes the phenomenology of sub-diffusion [7,8];!

(i) thefractional Brownian motion uses a generalized random walk model with correlations
between particle displacements leading to a diffusion equation with classical structure,
but with time-dependent coefficients [10,11];

(iii) thenonlinear Fokker—Planck equation (NLFP) for anomalous diffusion, which we use in
the present analysis, is obtained from a generalization of Einstein’s mean field equation
for the random walk by allowing the probability for a jump from one site to another to
depend on the concentration of walkers. When this microscopic dynamics is constrained
by the demand for diffusive-like scaling solutions, it is found [12,13] that the jump
probabilities must have the form of a power law ~ f @=D(r 1), where f(r, 1) is the
probability that a random walker be at position r at time . This approach provides a
molecular theory of anomalous diffusion based on particle interactions leading to sub-
or super-diffusion (see Fig. 1 in [14]) as a result of a balance between attractive and
repulsive interactions.?

In the next section, we review the nonlinear theory of anomalous diffusion and its main
result, the nonlinear Fokker—Plank equation (NLFP) whose solutions are given explicitly in
Sect. 3 and further discussed in Sects. 4 and 5. Fluorescence correlation spectroscopy (FCS)
is an interesting light scattering method which has been used to measure molecular diffusion
in biological systems and thereby detect anomalous diffusion. The FCS correlation spectrum
is computed analytically (i) for the case of classical diffusion in Sect. 6 and (ii) for anomalous

I The analysis has been generalised to include super-diffusion by introducing a similar power law ansatz for
the distribution of particle displacements [9].

2 In the restricted case that the walkers have equal probability to move in any direction, the NLFP reduces to
the phenomenological porous media equation [15].
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Fig. 1 Time evolution of the distribution function obtained analytically from Eq. (32) (solid lines) and from
Monte-Carlo simulations (open circles) for the sub-diffusive case (y = 2/3)

diffusion using the distribution function obtained from the NLFP solution in Sect. 7 where
the analytical results are compared with experimental data for the cases of lipid molecules
diffusion in cell membranes and of protein diffusion in crowded solutions.

2 The Generalized Fokker—Plank Equation

Generalizing the jump probabilities P; in Einstein’s one-dimensional master equation by
introducing a functional dependence on the distribution functions f(r, t) at the starting point
r — j and at the end point r of the jump, we have

Pi=p; Flf(r—jér 1), f(r,t)], with Z P =1, (D
J

where the probabilities p; are drawn from a prescribed distribution and the bounding con-
dition 0 < P; < 1 imposes 0 < F(x, y) < 1 as well as restrictions on the functional form
of F(x,y) = F[f(r—jdr,t), f(r,t)]. Under these conditions, multiscale expansion of the
master equation is shown to give the generalized Fokker—Planck (or generalized diffusion)
equation [14]

U L e (]
b — [xF (x, x
or  Var e
B 9 [0xF (x,y) 9xF(x,y)] of
= 2% ax ay foor
2
+ 1M1281i 0xF(x,y) xF(xy) (3xF(x,x) ﬂ ()
2 ar dx dy dx £
with the notation
|:8xF(x,y)] _|:3XF(X,Y)] (3)
ox Iy 0x L fenny=ron
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In Eq. (2), M| and M, are given by

or or
M= jpi=2u,
| St;mj < i

1 (5r)> 5 5 1 (8r)> 5
My = - > -7 == J—1J 4
T2 jjp’ ! 2 s 2 ) “@

where the J,,’s denote the moments J, = Zj Jj"pj. Note that for F'(x,y) = 1, Eq. (2)
reduces to the classical advection-diffusion equation.

Since the function F (x, y) is defined in terms of the jump probabilities, it must be bounded,
and so must satisfy

O<xF(x,y)<1 and O=<yF(x,y)<1, Vx,yel01]. (&)

Furthermore from the demand that the solution of the generalised Fokker—Plank equation
represent diffusive processes, it follows that f(r, ) should scale as f(r, 1) = 72 ¢ (ﬁ%)

When this form is inserted in Eq. (2), one finds [14] (see also Sect. 5 below) that self-similar
solutions are possible if and only if the functional F (f) has the from F (f) ~ f @1 asa
consequence of which one must have

oxF (x, OxF (x, _
fim | L) QPO | e (©)
y—ox ax dy
where the scaling exponent « is related to the diffusion exponent by
S )
YT

Anomalous (sub- and super-) diffusion can be described in a single formulation when the
jump probabilities have the following form in terms of the occupation probabilities

F(x,y; oy, we) ~ w5 Fs(x) + we Fe(y); ®)

here w; and w, are weighting factors relative to the functionals of the concentrations at the
starting point and at the end point of the jump. Using the notation a = w,/w; , (8) is rewritten

in normalised form as
_ F(x)+aF ()

Feoya = F i r o)

where the positivity arguments, x, y and the constraints (5) and F(x, y; @) > 0 imply that
0<ac<l

Considering the case that there is no drift (M = 0in Eq. (2)), and in order that the general
formulation describe diffusion, we should have a scaling solution of the form f (r,7) =
t772¢ (r/17/?) which demands that [14]

(C))

9 9
lim | —xF (x,y;a) — —xF (x, y;a,a) | = K x*7 !, (10)
dx dy

y—x
for some constant «. Using (9) in the L.h.s of (10) gives

l+a 1—axF'(xa,a)

=Kx*!, (11)
2 2 F(x;a,a)
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which is solved to yield

F ) B 2K xo!l 12)
ya,0) = — ex ;
o e P T Zaa—1

where B is an integration constant; reinserting (12) into (9), we find
{ﬂ 2K o—1 oa—1
X —a y —X
lta (;) exp (m = )
}‘FJ 1 1 '
—a 25 y*—l_xo—
I+ (?) exp (m s )
The natural limit: lim,—, | F(x, y;a) = 1 requires K = %(1 + a) 2%~ where A is an
unitary constant with the dimension of length. Thus,

1+aGx,y;a,a)

F(x,y;a,a) = (13)

F(x,y,a,a) = , 14
(x, y;a, @) 1+G(x,y;a,a) (14
with
I+a
T—a 1 a—1 _ La—1
G, yia,0) = (= exp (2 sem1 2 a . (15)
y 1—a a—1

It is clear that for any finite valuex > 0,0 < F(x, y;a,a) <1 ,Vy e [0, 1] and that the
limit F(x,y;a =1, — 1) = 1 gives normal diffusion. Furthermore

. La>1_ .. ) _Ja,a>1
)}I_)H})F(x,y,a,a) = [a’ w1’ %%F(x,y,a,a)— [ o<1 (16)
Physical Interpretation To provide some interpretation, we note that

0 G(x,y;a,a rx)e -1

D penyia @) = (1 +a) — 28D (( ) ) (17)
dx (14+Gx,y;a,a)) x

0 Gx,y;a,a 1— vy !

9 P yia,a) = (1 4+a) — 202149 2( (1) ) (18)
dy 1+ Gx,y;a,a) y

Since 0 < x, y < 1, the signs of these derivatives are determined by the factors on the right:
((x)*~! — 1) and (1 — (A y)*7"), and so depend on whether (o — 1) is positive or negative:

0 )
a>1=—= —F(x,y;a,a) <0< —F(x,y;a)
ax ay

0 9
a<l—= —F(x,y;a,a) >0> —F(x,y;a) (19)
ax dy

Inthe firstcase, @ > 1, the jump probability decreases with the concentration at the starting
point and increases with the concentration at the arrival site; in other words the jump rate is
reduced by putting more walkers at the origin and increased by putting more at the terminus
of a jump: this is analogous to an attractive interaction. For « < 1, we have the reverse
situation: the jump rate is increased by putting more walkers at the origin and decreased by
putting more at the terminus, thus emulating a repulsive interaction. In the standard problem
with all walkers at the origin at t+ = 0, the distribution decays monotonically away from
the origin; thus, if the particles repel, the distribution expands faster (i.e. tends to a uniform
distribution more quickly) whereas if they attract, then this attraction slows down the spread
of the distribution. The physical interpretation is that attractive interactions give sub-diffusion
and repulsive interactions give super-diffusion.
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3 Solutions of the Nonlinear Diffusion Equation

In the absence of drift, the generalized Fokker—Plank equation, Egs. (2) with (14) and (15),
gives the nonlinear diffusion equation [15]

af (r.1) g l+a 07
e =2 17 — [ ), (20)
(here M> = ; (‘Ssr t) > i Zp ;) and the scaling solutions are obtained following the develop-
ment given in [14] yielding
23 V@D
£ :fy/zw(l :i:Vt—y) , 1)

where W and V are determined by the normalization condition (see below) and by the
expression obtained by inserting (21) into (20)

ywa-l e Lzl 1 My~ (22)
l4+a 1+4+a
(1) Super-diffusive Case For « < 1,
1/(a=1)
o= (i :7) | 3)

The normalization condition (using the reduced variable ¢ = yl/2 ﬂ%) reads

o0 _ w 1 ()
WV‘”Z/ de 1+ Vo — L e
o (1+¢) NIV

provided
oa+1

a—1

<0 = —-l<a<l = y>1, 24)

and the mean-squared displacement (r?) = [0 2 f (r; 1) dr is given by

o0
(rz) =t'w V—3/2/ de g2 (1 + g_z)l/(a%)

3a—2
_ W alGiy) _ o i) (25)

WUV T TV ATy

which is finite if
30 — 1
a—1

1 3
<0 = §<a<1 — §>y>1. (26)

(i1) Sub-diffusive Case For 0 < y < li.e. @ > 1 the distribution has finite support so that

1/(@—1)
f(r 1) —r—V/ZW(1 - Vrz) @(1 - Vrz) (27)
’ - tV [}’ )

with the normalization condition

w 1 T2+ 1)

1
WV_I/Z/ de (1= Vo) — o - a1l
e =8) WVOETCL )
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and the mean-squared displacement reads

1
<r2) — YW ‘/73/2/71 d{{z (1 _ é_2)1/(&71)

_ WAt o T a8
- 1 5y Sa—3y"
JV Vo2 M= +3) 14 21"(%)

4 The Anomalous Diffusion Coefficient

The continuum results imply that an initial distribution of the form fy(r) = W' (1 +
Sq (/ w)2)1+/(a—1) with W’ determined by normalization and s, = F for « = 1, will evolve
self-similarly with mean-squared displacement increasing as t¥. Indeed determining the
quantities W and V by combining the normalization condition with (22), the mean-squared
displacement for both sub- and super-diffusion takes the form

(r?)= D, 17, (29)
with

~ 1 y
D, = const x W V3/% = const x 22077 (LC;) My . 30)
Y —

By is the anomalous diffusion coefficient and has dimensions [5,,] = L2 T~V The distrib-
ution function then reads explicitly for super-diffusion (¢ < 1)

5\l
Frnn = 1(1 + r) , 31)

/ma 7T5y pe% mq Dy tY

and for sub-diffusion (o > 1)

1 r2 Vie=b r2
frt) = — (1 — = ) @(l — ~), (32)
/na nD, 17 ng Dy t¥ ng Dy tV

where m, and ny are constants. As an example we show in Fig. 1 the time evolution of the
distribution function f (r, t) for the sub-diffusive case.
Similarly Eq. (20) can also be written as

a ) . a
Ef(nt): airjot(rat) Wlth ja(rvt) - DO( Ef(rat)s (33)

where Jy (r, t) is the current density; here D, = 1% (A £)*~! M, has the usual dimensions
of a diffusion coefficient (L2 7~1). It follows that we have the relation 5), =y DY, where
cy is a constant with limy, .| ¢, = 1.

These results emphasize that the anomalous diffusion coefficient 5), cannot be defined

in the usual sense lim;_, 5 “iﬂ = D (which would give the unphysical values D = 0
for sub-diffusion and D = oo for super-diffusion) but can be defined as a diffusion coef-
ficient with fractional time dimension. In practice f)y is evaluated from the mean squared
displacement (29) as measured experimentally [2—5] or as obtained by numerical simulation
of the master equation [14], both methods giving a physically observable quantity. Only in

the limit y = o = 1 and @ = 1 does one have the the classical result: D)—; = Dy—1 = M>
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with dimension L? T~!. Conversely we should note that the advection term in the gen-
eralized Fokker—Planck equation reads Cy % f where Cq, = 1;“ o f =l My (with
M, = ‘;—; Z,» J pj) has dimensions [Cy] = L 71 In the limit « — 1 and ¢ = 1, one
has the usual advection-diffusion equation and f(r, t) takes the classical Gaussian form
F (1) ~ exp (— <’—”>2) with D = Dy = Ms and ¢ = Couy = M;.

4Dt

S Nonlinear Diffusion in d-Dimensions
Considering molecular diffusion in a d-dimensional volume, the nonlinear diffusion equation
(20) (for the sub-diffusive case o« > 1)

of gt D Dy V2 ), (34)

with D, = Aol % M, , becomes, in d-dimensions with spherical symmetry,

d L3 4 1a ¥ d-129
5, /) = Do G5 o f“( nH= (ﬁ +— ) fern. (35
A scaling solution will have the form
FO0 =9 (r/17?) = W¢@) (36)
which gives
a 4 1 ,
Ef(’"s[):—zm(d¢+5¢),
0 o _ o /aoa—1
an (r,1) = W(ﬁ (R
82 o « a—2 " 2
S0 = gy 647 (097 + (@ = 197). (37)

Inserting these results into Eq. (35), it follows that in d-spherical dimensions there is a general
relation between the anomalous exponent and the nonlinear exponent
dy day 2

o= SR S 38
2 T 2 TV T YT w— (38)

that is

2
inl—d:y:T; in2—-d:y=1/a ; n3—-d:y= (39)
o

3a — 1

In the next sections we will consider an experimental situation in planar symmetrical
dimension in which case, the scaling equation (35)-(37) becomes

§@¢wl 2)=a (40)
which has the solution
1
a—1 =T . r2
o= (1 g at) v = “
o
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Evaluating the normalisation constant B, we finally obtain

1\ —1 2 a1
£ = (7) (1 ~n? - /a) . 42)
dmaDg t o (4maDyt) +

6 The Fluorescence Correlation Spectrum

Fluorescence Correlation Spectroscopy (FCS) [16, 17] is an experimental technique by which
one observes and records temporal changes in the fluorescence emission intensity caused by
single fluorophores passing through the detection volume. The measured spectrum contains
the correlation function of the temporal fluctuations of fluorescently marked particles thereby
providing a quantitative evaluation of their diffusing properties. The method is particularly
appropriate for the study of biological molecules in their proper environment such as cells
and cell membranes because the measurements can be performed in very small volumes
with a um detection accuracy and at very low intensity illumination. From the analytical
viewpoint, the application of the theory of anomalous diffusion to FCS is very interesting
because the computation of the fluorescence correlation spectrum involves the distribution
function of the diffusing objects. Therefore in contrast to the simple typical measurement
of the mean squared displacement, FCS offers a possible measurable indication of different
molecular mechanisms of diffusion.

The fluorescence correlation signal J (t) results from the convolution of the instrumental
form factor F with the correlation function @ of the diffusing particles with mean concen-
tration (C) in the illuminated volume V :

J(®)=1o (C)/ @ (ry, r2, 7) F(r1, r2) dridry, (43)
v

where Iy is the illumination intensity. The form factor is well approximated by a Gaussian
distribution over the detection volume of width w: F(ri,r) = exp[—(rl2 + r22) / w?],
and @ (ry, r2, ) describes the decay of concentration fluctuation correlations. Assum-
ing ® depends only on the distance between the fluctuations, ie. & (r;,r2,v) =
@ (Ir; —r2/?, 1) = @ (r%, ) and defining R=[R| = §|r|+r2|sothatr? +r] = 2R*+1r2,
we obtain

J(1) = Iy (C) / @ (12, 7) e 2R/ e/ R g, (44)

v

which, when the detection volume is 2-dimensional (such as e.g. in cell membranes), gives

* 2x2 Jw? : 0 2 2 1pw?
J(T)=10(C)</ e_x/wdx) 271/ @ (2 t) e P rdr
o 0

2 o [ 2 —r22w?
=1y (C) m*w D (r°,1)e rdr. (45)
0

For classical diffusion, ® is a Gaussian distribution and the fluorescence correlation spec-
trum is given by

o0
J(r) =1y (C) n2w2/ o~ /ADT 2w
0

1, 2D\ !
=l (C) ymw? (1+ =) . (46)
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7 Anomalous Molecular Diffusion in Crowed Media

In many instances, diffusion processes in biological systems do not obey the classical descrip-
tion because particle diffusive motion is usually hindered in crowed biological media often
leading to sub-diffusion. When this is the case, the distribution, instead of the classical
Gaussian, has a power law structure as described in Sect. 3, and in the FCS analysis of 2 — d
molecular diffusion such as e.g. in cell membranes [18] the function ® in (45) must be the
two-dimensional distribution (42) which gives

J(1) = Ip (C) %uﬂ J(@). (47)
with

J() =27 / (7)) e rdr
0

1
00 1 1/a —1 2 a1
= 27{/ (7) (1 _zZ - ; ) eI gy
o \4maDyt a  (4raDyr)V* ),

With a change of variables

7(l — 1/a)r?
x=1- ZE O (48)
(AmraDy1)
and defining
. (47 a Dyt)'/® (49)
T2 — 1/ o) w?’
we have for o > 1
1
T@ = - le_K/ YT T KX dy. (50)
- 0

The General Spectrum Now using the expression of Dy, in terms of the second moment M,
(incorporating the unitary dimensional constant A in w) we define the reduced time variable

M2 T
w2’

T=((+a) (51)

With this definition, we obtain from (50)

= R N NP e
J([@) = [ @m) @ % / xaTea 1D T T X gy for a>1, (52)
o= 0

Similarly for « < 1 we find

~ @ e onSre [T L e on % e,
J@) = I —a el xT-e e T dy (x<1). (53)
- 1

These are the general expressions for the correlation spectrum obtained from the nonlinear
theory of anomalous diffusion.

3 The fluorescence correlation spectrum was also computed analytically from the solution of fractional dif-
fusion equation for sub-diffusive motion [19].
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Fig. 2 Fluorescence correlation spectrum. Experimental data (red dots) from Schwille et al., Fig. 4 in [18],
showing the fluorescence correlation intensity of lipid molecules diffusing in the plasma membrane of rat cells
(vertical axis intensity values; horizontal axis time in ms). The solid curve is the best-fit of the theoretical
spectrum (52). For comparison the dashed curve shows the best-fit Gaussian profile (46)

The Long Time Behavior Observing that large 7 in (49) implies large K, the long time
approximation of (50) gives

1
(),
a—1K

a-1\ 1% o 7 &
J@) ~ ((2”3) 1= e @ (@)
T

The Classical Spectrum For a = 1 and in the limit « — 1, we retrieve the result (46)
for the Gaussian distribution

J(t)~ (54)

or

(55)

_ ZMQ'L’

linllj(?)=71(ﬁ)=(1+ﬁ)“ with 7 = (56)

w2

As an application of the theory we compare the theoretical correlation spectrum with
fluorescence correlation experiments reported in [ 18] and in [20]. The results obtained for the
diffusion of fluorescently labeled lipid molecules in cell membranes [18] and of fluorescent
apoferritin (a spherically shaped oligomer) in a crowded dextran solution [20] clearly show
deviations from classical Brownian motion.

The data analyses in terms of sub-diffusion presented in [18] and in [20] show good
agreement between the experimental results and a theoretical correlation spectrum. However
the analytical expression used in [18] to compute the spectrum (Eq. (5) in [18]) follows
from the simple replacement of the Brownian mean squared displacement 4Dt by I't” in
the expression of the classical spectrum (46), a procedure which is analytically incorrect.
We processed the spectra images in [18] to obtain the data shown in Fig. 2 where they
are compared with our analytical results. While obviously the data are very poorly fit by
the classical spectrum (46), we find that the theoretical nonlinear correlation spectrum (52)
reproduces very well the experimental data indicating sub-diffusive motion (¢ = 1.45 —
y ~0.8).
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Fig. 3 Fluorescence correlation spectrum (vertical axis intensity normalized values; horizontal axis time in
s). Experimental data (black squares) from Szymanski and Weiss, Fig. 1b in [20], showing the fluorescence
correlation intensity of apoferritin in a crowded dextran solution. The solid red curve shows the theoretical
spectrum, Eq. (52). The dashed red curve was obtained from Eq. (1) in [20]. Both fits yield a subdiffusive
exponent y = 0.81

The second series of experiments is illustrated in Fig. 3 which shows the spectrum of
fluorescent apoferritin in a crowded dextran solution [20]. Using the same digitising proce-
dure, we find that the data are well described by the nonlinear spectrum (52). We note that
the experimental spectrum is also compatible with the expression obtained from Fractional
Brownian Motion analysis (Eq. (1) in [20]). Consequently it should be recognised that a fit
using a power law type spectrum, as proposed in [20], is almost indistinguishable from the
nonlinear spectrum fit, Eq. (52), both yielding a subdiffusive exponent y >~ 0.8.
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