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Abstract. – The porous-media equation has been proposed as a phenomenological “non-
extensive” generalization of classical diffusion. Here, we show that a very similar equation
can be derived, in a systematic manner, for a classical fluid by assuming nonlinear response,
i.e. that the diffusive flux depends on gradients of a power of the concentration. The present
equation distinguishes from the porous-media equation in that it describes generalized classical
diffusion, i.e. with r/

√
Dt scaling, but with a generalized Einstein relation, and with power-law

probability distributions typical of non-extensive statistical mechanics.

One of the characteristic features of the non-extensive thermodynamics introduced by
Tsallis is the appearance of non-exponential distribution functions with power law tails [1,2].
There has been considerable interest recently in the question of how such non-exponential
distributions might arise from first-principle considerations [3–6]. In this paper, we show that
it is possible to obtain, in a generic manner, power law distributions for the diffusion of a tracer
particle in a liquid by assuming a simple generalization of the usual linear-response arguments.

In classical diffusion, the probability to find the diffuser at point −→r at time t given that it
starts at point −→r 0 at time 0 obeys the diffusion equation

∂

∂t
P (−→r , t;−→r 0, 0) = − ∂

∂−→r · −→u (−→r , t)P (−→r , t;−→r 0, 0) +
∂

∂−→r · ←→D · ∂

∂−→r P (−→r , t;−→r 0, 0) , (1)

where −→u (−→r , t) is the drift and
←→
D the diffusion tensor, see, e.g., [7]. Note that, in general, we

could, instead of probabilities, speak of the concentration of a diffusing species or the density
of a single-component system undergoing self-diffusion just as well. There are currently two
widely explored generalizations of this classical diffusion equation. The first involves the
appearance of fractional derivatives in the diffusion equation [8, 9]. These generalizations
can be derived, e.g., by considering a random walker with either long-tailed waiting times
(giving rise to a fractional time derivative) or long-tailed jump-length distributions leading
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to fractional space derivates and known as a Levy flight [8, 9]. A second generalization of
the classical diffusion equation sometimes used to model anomalous diffusion is the so-called
porous-media equation

∂

∂t
P (−→r , t;−→r 0, 0) = − ∂

∂−→r · −→u (−→r , t)P (−→r , t;−→r 0, 0) +
∂

∂−→r · ←→D · ∂

∂−→r Pµ (−→r , t;−→r 0, 0) . (2)

As its name indicates, this equation was established for particular physical systems [10],
but it has also been proposed as a phenomenological “non-extensive” extension of classical
diffusion [11, 12]. In one dimension and in the absence of drift, −→u (−→r , t) = 0, this equation
admits of power law solutions of the form

P (r, t; 0, 0) = At−
1

µ+1

(
1 + A1−µ 1− µ

µ (µ + 1)
r2t−

2
µ+1

2D

) 1
µ−1

, (3)

where the constant A is fixed by normalization. This function can be written more suggestively
as

P (r, t; 0, 0) = At−
1

µ+1 e2−µ

(
−A1−µ 1

µ (µ + 1)
r2t−

2
µ+1

2D

)
, (4)

where the so-called q-exponential is defined by

eq (x) = (1 + (1− q)x)
1

1−q , (5)

which has the property that limq→1 eq(x) = ex. Note that for q < 1, one restricts the domain
to 1 + (1− q)x > 0 and assumes that eq(x) = 0 otherwise. For this reason, the exponents are
generally unconstrained although one expects that µ > 0 so as to avoid singularities.

Notice that eq. (2) can be viewed as a classical diffusion equation with the effective diffu-
sion coefficient µ

←→
D Pµ−1(−→r , t;−→r 0, 0). Since concentration-dependent and density-dependent

diffusion coefficients are commonly used in the scientific literature, this does not differ radi-
cally from classical diffusion: what is unusual is that the effective diffusion coefficient vanishes
when the probability (or concentration) vanishes.

We consider here a collection of atoms moving under Newtonian dynamics and concentrate
on describing the probability of finding a tagged particle, say the 0th particle, at position −→r
at time t given it begins at position −→r 0 at time t = 0,

P (−→r , t;−→r 0, 0) = 〈δ (−→q (t)−−→r ) δ (−→q (0)−−→r 0)〉0 , (6)

where the position of the tagged particle is −→q (t) and the notation 〈. . .〉0 indicates an ensem-
ble average over some distribution of initial conditions for the other, non-tagged, particles.
Differentiation of eq. (6) with respect to time leads to the exact equation

∂

∂t
P (−→r , t;−→r 0, 0) = − ∂

∂−→r · −→u (−→r , t)P (−→r , t;−→r 0, 0) +
∂

∂−→r · −→J , (7)

with the current
−→
J (−→r , t;−→r 0, 0) = −〈−→v ′ (t) δ (−→q (t)−−→r ) δ (−→q (0)−−→r 0)〉0 , (8)

where −→u (−→r , t) is the average macroscopic velocity, −→v (t) is the instantaneous velocity of the
tagged particle and its peculiar velocity is −→v ′(t) = −→v (t)−−→u (−→r , t). The idea of linear-response
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theory is that, aside from convection and in the absence of driving forces or boundary condi-
tions, the distribution should relax toward a uniform distribution. Hence, one expects the cur-
rent to be proportional, in some sense, to gradients of the distribution and indeed the simplest
assumption that

−→
J ∝ −→∇P gives the usual phenomenological Fick’s law. Higher-order terms

are expected to involve higher-order gradients. Such an expansion is most easily developed in
Fourier space by noting that the Fourier transform of the current and the distribution are

−̃→
J

(−→
k , t;−→r 0, 0

)
= −

〈−→v ′ (t) exp
[
i
−→
k · −→q (t)

]
δ (−→q (0)−−→r 0)

〉
0

, (9)

P̃
(−→

k , t;−→r 0, 0
)

=
〈
exp

[
i
−→
k · −→q (t)

]
δ (−→q (0)−−→r 0)

〉
0

, (10)

and expanding their ratio to get a series of the form

−̃→
J /P̃ = −i

−→
k · ←→D (t) + . . . , (11)

thus giving the desired gradient expansion [13]. In general, the diffusion coefficient, which is
given by an Einstein relation, is time dependent on microscopic time scales characterized by
the time between atomic collisions but in the long-time limit appropriate to hydrodynamics
it tends toward a constant value.

Comparison of eqs. (2) and (7) suggests that the key assumption in the use of the general-
ized diffusion equation is that the current is no longer most simply described by gradients in
the distribution function, but rather by gradients in the distribution raised to some power. In
order to generalize the linear-response argument, we proceed by defining the Fourier transform
of the µ-th power of the distribution to be

P̃µ

(−→
k , t;−→r 0, 0

)
=

∫
d−→r exp

[
i
−→
k · −→r

]
Pµ (−→r , t;−→r 0, 0) , (12)

and expand in the wave vector to obtain

−̃→
J /P̃µ = −i

−→
k · ←→D µ + . . . , (13)

which gives

←→
D µ (t) = 〈−→q (t)−→v ′ (t) δ (−→q (0)−−→r 0)〉0

/ ∫
d−→r Pµ (−→r , t;−→r 0, 0)

=
←→
D 1 (t)

/ ∫
d−→r Pµ (−→r , t;−→r 0, 0) , (14)

where
←→
D 1(t) is the classical diffusion coefficient which is the same as that occurring in eq. (11).

Note that by expressing −→q (t) in terms of the time-integral of the velocity, the diffusion coef-
ficient becomes a function of the velocity auto-correlation function as expected,

←→
D µ (t) =

∫ t

0

〈−→v (t′)−→v ′ (t) δ (−→q (0)−−→r 0)〉0 dt′
/∫

d−→r Pµ (−→r , t;−→r 0, 0) . (15)

Then, keeping only the lowest order in (13), we obtain the generalized advection-diffusion
equation

∂

∂t
P (−→r , t;−→r 0, 0) = − ∂

∂−→r ·−→u (−→r , t)P (−→r , t;−→r 0, 0)+
∂

∂−→r ·←→D µ (t)· ∂

∂−→r Pµ (−→r , t;−→r 0, 0) , (16)
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with a generalized Einstein relation, eq. (15), relating the diffusion coefficient to the underlying
microscopic dynamics and corresponding distribution function. Note that even on hydrody-
namic time scales, for which

←→
D 1(t) can be replaced by

←→
D 1 = limt→∞

←→
D 1(t),

←→
D µ(t) remains

time dependent due to its dependence on Pµ(−→r , t;−→r 0, 0). We have no proof that distributions
evolving under this equation remain positive definite, but it will be shown below that in the
absence of drift, solutions to eq. (16) are closely related to those of the original porous-media
equation so that if the latter are positive-definite, then so are the former.

Scaling solutions of eq. (16) in the absence of drift (−→u = 0) are easily examined. For
simplicity, consider the approximation, expected to be valid on hydrodynamic time scales,←→
D 1(t) ∼ limt→∞

←→
D 1(t) ≡ ←→

D 1, and suppose that in d-dimensions the distribution assumes
the form P (−→r , t;−→r 0, 0) = t−daF (r/ta) for some exponent a (note that the prefactor is dictated
by normalization). Then, one has∫

d−→r Pµ (−→r , t;−→r 0, 0) =
∫

d−→r t−dµaFµ(r/ta)

= Sdt
−d(µ−1)a

∫ ∞

0

Fµ(x)xd−1 dx , (17)

with x ≡ t−a|−→r | and where Sd is the area of the d-dimensional hypersphere. The generalized
diffusion coefficient is then ←→

D µ (t) = td(µ−1)a←→D ′
µ , (18)

where
←→
D ′

µ ≡
(

Sd

∫ ∞

0

Fµ(x)xd−1 dx

)−1 ←→
D 1 (19)

is a time-independent coefficient. Substitution into eq. (16) gives, after simplification,

−at−da−1 [dF (x) + xF ′(x)] = t−a(d+2) ∂

∂−→x · ←→D ′
µ · ∂

∂−→x Fµ (x) , (20)

which is only valid for a = 1
2 . The generalized diffusion equation given here therefore describes

ordinary diffusion when there is no drift. However, the distributions are not Gaussian. For
example, in one dimension the scaling equation becomes

−1
2
F (x)− 1

2
x
d
dx

F (x) = D ′
µ

d2

dx2
Fµ (x) , (21)

which is again solved by the canonical q-exponential form as

F (x) = Ae2−µ

(
− A1−µ

2µ (µ + 1)D ′
µ

x2

)
, (22)

or, with µ = 2− q,

P (r, t; 0, 0) = At−1/2

(
1− (1− q)

Aq−1

(2− q) (3− q)
r2

2D ′
µt

) 1
1−q

. (23)

The mean-squared displacement is then obtained straightforwardly from (23); with r∗ =
r/

√
D ′

µt, one has

〈r2(t)〉 =
∫ ∞

0

dr r2 P (r, t; 0, 0)

= D ′
µ t

∫ ∞

0

dr∗ r∗2A
(
1− (1− q)

Aq−1

(2− q) (3− q)
r∗2

2

) 1
1−q

. (24)
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Thus, in the absence of drift, eq. (16) describes normal diffusion in the sense that the mean-
squared displacement grows linearly with time, but it generalizes classical diffusion as the
distribution (23) takes on the form typical of non-extensive systems.

Although eq. (16) is formally the same as eq. (2), there is an additional self-consistency
implied by the Einstein relation (15) which raises the question as to whether or not these
descriptions can be regarded in any sense as being the same. In some cases they are, because
eq. (16) is of first order in time so that any time dependence generated by the self-consistency
can be hidden by a non-linear change in the time variable. For example, in the absence of
drift, let Q(−→r , s;−→r 0, 0) be a solution to eq. (2), written with the variable s instead of t, and
having initial condition P (−→r , 0;−→r 0, 0). Then it is easy to see that the solution of eq. (16)
is P (−→r , t;−→r 0, 0) = Q(−→r , s(t);−→r 0, 0) where the time variables are related by the implicit
equation

t (s) =
∫ s

0

(∫
d−→r Qµ (−→r , σ;−→r 0, 0)

)
dσ. (25)

To illustrate this, consider again the case of one-dimensional diffusion with no drift term. The
solution of the porous media equation (2) is given by (3) which, with the replacement t → s,
is what is called here Q. Substitution into eq. (25) gives

t (s) =
∫ s

0

(∫
d−→r Qµ (−→r , σ;−→r 0, 0)

)
dσ = Cs

2
µ+1 , (26)

for some constant C, thus recovering eq. (22).
It is interesting that eq. (16) is very similar to the equation recently derived by Abe and

Thurner [6], where the derivation begins with the classical picture based on a random walker
which jumps from position r+∆ at time t to position r at time t+ τ with a jump probability
φ(∆) = φ(−∆), so that the probability that the walker be at r at time t + τ is given by

P (r, t + τ) =
∫

P (r +∆, t)φ (∆) d∆. (27)

They consider the more general case in which the probability P (r, t) occurring in the integral
is replaced by the so-called escort probability [14]

F (r, t) =
P ν (r, t)∫
P ν (r, t) dr

, (28)

with the result that the diffusion equation becomes

∂

∂t
P (r, t) = Dν (t)

∂2

∂r2
P ν (−→r , t) +

1
τ
(F (r, t)− P (−→r , t)) (29)

with Dν(t) defined as in eq. (15). This result (29) is somewhat difficult to interpret as its
derivation involves taking the limit τ → 0 in which case the second term on the right is
problematic. Nevertheless, the result is strikingly similar to our nonlinear-response result
including the definition of the time-dependent diffusion coefficient.

In this paper, we have developed a method whereby a standard derivation yields typi-
cally non-extensive expressions by generalizing a key ansatz, i.e. a generalization of standard
linear-response arguments which gives rise to a q-diffusion equation including a generalization
of the Einstein relation for the diffusion coefficient. The equation is similar in structure to the
porous-media equation but with the important difference that the diffusion coefficient depends
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on the solution of the equation which leads to the fact that, in the absence of drift, the diffusion
process is classical with mean-squared displacement increasing linearly with time. Neverthe-
less, the new q-diffusion equation admits of the now well-known q -exponential distribution
which is often postulated as a description of nonequilibrium systems. Comparison of our re-
sults with the similar results of Abe and Thurner indicates how “nonextensive” expressions
can arise without the explicit introduction of escort probabilities.
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