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We propose in this paper a generic model of a nonstandard aggregation mechanism for
self-assembly processes of a class of materials involving the mediation of intermediates consisting
of a polydisperse population of nanosized particles. The model accounts for a long induction period
in the process. The proposed mechanism also gives insight on future experiments aiming at a more
comprehensive picture of the role of self-organization in self-assembly processes. © 2010 American

Institute of Physics. [doi:10.1063/1.3389502]

I. INTRODUCTION

Nanophase materials are of key importance in a variety
of fields from molecular and cellular biology to technologi-
cal innovation. They also pose major theoretical challenges
in view of their multiple scale dynamics, whereby micro-
scopic level processes determine macroscopic properties
through the growth of initial fluctuations favoring, in some
way, the specific material that will eventually emerge from
synthesis. This switches on, in turn, a variety of self-
organization phenomena associated with the coexistence of
competing pathways.

The processes we investigate in this work involve two
steps. First, an initial species N is able to agglomerate into an
intermediate form X. We will primarily envisage the
increase/decrease in the amount of X as being due to the
attachment/detachment of units of N, although more com-
plex dynamics might be relevant in some cases. We expect
that N and X will reach a quasi-equilibrium in a relatively
short time. The second step of the process is the self-
assembly of the final product S from X. By “self-assembly”
we imagine that the units of X must not only join together to
form S, but must undergo some sort of internal transition
(such as a restructuring) which is quite slow. One of the main
points of this work is to show that simply assuming a long
characteristic time (i.e., a small rate constant) for this internal
transition is not sufficient to give a long induction time.
However, by including cooperativity—whereby the nascent
S material templates or catalyzes the internal transition—
arbitrarily long induction times can be achieved. A math-
ematical model of the contribution of cooperativity will be
developed based on general physical considerations of how
the process must proceed.

The need to synthesize intermediate substances prior to
the material of interest is also a well known phenomenon in
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chemistry, where it is typically also reflected by the appear-
ance of an induction pelriod.l_5 Hierarchical self-assembly is
also ubiquitous in biology. In particular, in a series of papers
on the polymerization and crystallization of sickle cell hemo-
globin (HbS)—an issue of crucial importance for the patho-
physiology of sickle cell anemia—it has been shown that
metastable dense-liquid clusters serve as precursors to the
ordered nuclei of the HbS polymo:rization.éf8 Induction times
causing time delay have been observed and analyzed during
this nonstandard nucleation process of the HbS polymers.
More generally, it is now known that homogeneous
nucleation—most notably in nanophase materials such as
proteins but apparently even in simple fluids—can involve a
two-step process starting with the formation of more struc-
tured liquidlike droplets and/or clusters®™'” from the solution,
followed by the development of crystalline order.'""'"? Here,
the material in solution can be viewed as the population N of
our scheme, the dense-liquid phase as the intermediate X,
and the solid as S. Cooperativity is again responsible for the
induction period and time delays during the subsequent or-
dering corresponding to the processes N— X and X — S.

A class of nanophase materials in which self-assembly
appears to be accompanied by a rich variety of unexpected
behaviors are synthetic zeolites,n’w_17 which find,
nowadays, applications in a broad range of areas such as
heterogeneous  catalysis, petroleum  refining, and
microelectronics.'™'” In the context of zeolite formation
mechanism, silicalite-1 type zeolite™ in particular has been
the subject of numerous studies.”'

The starting point of silicalite-1 synthesis is a suspension
of 3 nm silicate nanoparticles.23 The first period of aging, at
room or elevated temperature, is characterized by a rapid
evolution of these nanoparticles. During this period, the av-
erage nanoparticle diameter increases to a slightly larger
value of 5-6 nm.?>*313¢ On a structural level, the nanopar-
ticle silicate network condenses, i.e., additional siloxane
(Si-O-Si) bonds are formed.***>** Subsequently, still larger
particles start growing, ultimately resulting in silicalite-1
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FIG. 1. A schematic demonstration of multistep versus standard synthetic
pathways in a two-order parameter space accounting for the presence of
partially structured intermediates.

zeolite crystals. Convincing evidence shows that silicalite-1
crystals grow by aggregation of the 5-6 nm nanoparticles.31
It was proposed that a fraction of the condensed 5-6 nm
nanoparticles develops a zeolite crystalline framework.
These intermediate nanoparticles can be identified as
“nuclei” for zeolite crystal growth by nanoparticle
aggregation.3] The picture is then one of nanoparticles N
giving rise to intermediates X which, in turn, form the
(zeolite crystalline) solid S, as illustrated in Fig. 1. Recent
experimental liquid state *°Si NMR and pH results®® of
silicalite-1 zeolite crystallization are presented and described
in Fig. 2.

Figures 2(a) and 2(b) show the experimental distribution
of silicon among different species in suspension, determined
with liquid state Si NMR. There is a long induction period
during which the amount of nanoparticles varies slowly, fol-
lowed by a rather abrupt transition toward an equilibrium
state dominated by zeolite crystalline material (solid). Be-
cause nanoparticles N and intermediates X have similar size,
NMR cannot distinguish between these two species. The
rapid condensation of nanoparticle framework in the initial
stage, resulting in the formation of intermediates, is evident
from the silicon connectivity distribution [Fig. 2(d)] and the
corresponding increase in the suspension pH [Fig. 2(c)].
Upon transition to crystalline material, the pH shows a sec-
ond increase. Notice that during the later stages of crystalli-
zation, other mechanisms, such as Ostwald ripening, acting
on the already formed aggregates are likely to take over as
dominant crystallization mechanism.

In view of the foregoing, we argue that a timescale sepa-
ration and the appearance of long quasistationary plateaus
are likely to be a generic property of large classes of syn-
thetic processes. One of the main goals of this article is the
theoretical explanation of the mechanisms underlying these
phenomena. We establish a generic theoretical model which
captures the main features of self-organization in the process
of multistep nucleation and growth. Specifically, we show
how the combination of intermediate steps in self-assembly,
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FIG. 2. Liquid state >’Si NMR and pH results from Ref. 36. (a) and (b)
Evolution of nanoparticles (N and similarly sized X particles), oligomers,
and NMR-undetected phase (denoted as “solid”). The undetected phase con-
sists of large particles, i.e., crystalline solid (S) and possibly a fraction of
intermediates (X particles that are considerably larger than nanoparticles)
that fall outside the NMR detection limit. The oligomers are an additional
group of smaller silicate species, but their presence is assumed to be of only
secondary importance for the crystal growth. Panel a: direct NMR results
obtained with a short delay time of 7 s between radiofrequency pulses in the
NMR experiment. The process shows two-step evolution. The first step
(<1 h) indicates the formation of intermediate species. Subsequently, there
was a long induction period during which the amount of nanoparticles var-
ied slowly, followed by a rather abrupt transition toward an equilibrium state
dominated by zeolite crystalline material. It is noted that in the original
publication, these NMR data were corrected to account for a longer NMR
delay time of 92 s (panel b), based on measurement of the unheated sample
(Ref. 36). The correction resulted in quantitatively more reliable populations
but the initial step was suppressed. The two-step evolution was also evident
from measurements of the suspension pH (panel c) and the connectivity of
the nanoparticle framework (panel d). The connectivity is expressed as Q"
fractions, where Q" stands for a silicon atom connected to n=1-4 neigh-
boring silicons via siloxane bonds. The disappearance of the Q* fraction
might indicate a depletion of the more structured X particles.

together with nucleation and cooperativity, in the form of
growth controlled by the available surface area of the prod-
uct, can explain the long induction times often observed in
these processes. For the particular case of zeolites, our model
is intended to sort out the basic microscopic mechanisms that
control the nucleation and growth of the final crystalline
product. This can have some practical repercussions not only
in eliminating superfluous conjectures that could be enter-
tained in the absence of theoretical input, but also in further
designing targeted and better controlled experiments.

The article is organized as follows: In Sec. II, we outline
the proposed mechanisms for self-organization incorporated
in our mathematical models. In Sec. III, we develop a simple
phenomenological model based on the assumption of coop-
erative behavior which reproduces much of the qualitative
behavior summarized above. A more microscopic and
mechanistic model is presented in Sec. IV and shown to
describe the generic qualitative features of recent observa-
tions and lead to a prediction regarding the distribution of
cluster sizes. The main conclusions are summarized in
Sec. V.
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Il. THE MECHANISMS FOR SELF-ORGANIZATION
AND THEIR MODELING

In this section, we outline the construction of mathemati-
cal models capable of quantifying the mechanisms summa-
rized in Sec. I and, in particular, the presence of multiple
time scales and the existence of a long induction period. The
models to be developed are articulated around three basic
steps which account for the self-organizing behavior.

(a) Equilibration between nanoparticles and intermediates.
This part of the dynamics will depend on the details of
specific systems. Here, we will model it as a globally
autocatalytic process whereby nanoparticles and inter-
mediates interact to form new intermediates while de-
pleting the nanoparticle population. The rationale be-
hind this assumption is that in the particular case of
zeolites, the intermediate is not a single species but,
rather, it is believed to consist of a population of struc-
tures of various sizes.”*® We assume that the dominant
mechanism for conversion of nanoparticles into inter-
mediates is the growth of smaller intermediates via ag-
gregation of nanoparticles, i.e., via an autocatalytic
mechanism. It would be possible to include nucleation
of new intermediates, but it seems likely that growth
will be the dominant process so that, for simplicity,
nucleation can be neglected. It is assumed that at the
beginning, a small population of intermediates is al-
ready present due, e.g., to thermal fluctuations. Obvi-
ously, for other systems, such as proteins, first-order
reactions characteristic of nucleation would be more
appropriate.

(b) Initial formation of final product. At some point, a
stable cluster of S must be formed which will then
proceed to grow and we assume that the long plateau
referred to earlier is a measure of the time required for
this to occur. In a simple fluid, this would be recog-
nized as a nucleation phenomenon37 which is typically
modeled as a probabilistic process occurring with a
probability per unit time proportional to the supersatu-
ration. In the case of more complex materials, it may
be that the intermediates must pass through multiple
structural phases or that some other type of transforma-
tion of the intermediates is necessary before stable
clusters of final product can form. It might be more
appropriate in this case to speak of self-assembly rather
than nucleation.*® Nevertheless, we will assume that
this complex microscopic process can be crudely de-
scribed in the same terms as nucleation in a simple
fluid.

(c) Growth and cooperativity. Once the product begins to
form, the speed of the process increases dramatically.
This is a signal of cooperative behavior whereby the
presence of some product accelerates the formation of
new product. One possibility is that this is simply due
to the growth of the clusters once they are formed. In
simple fluids, secondary nucleation—the nucleation of
new crystals on the surfaces of existing crystals—also
occurs and can speed the formation of (:rystals.39 In
more complex materials, if the intermediates must pass
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through different phases, then a growing cluster could
also catalyze that process thereby accelerating cluster
formation. We will not try to distinguish these different
mechanisms but will simply account for an acceleration
of the rate of cluster formation due to the presence of
existing product.

We will discuss the implementation of this phenomeno-
logical framework in two stages. First, we translate it into a
crude phenomenological model which serves to illustrate the
general ideas. Then, we describe a more microscopic,
mechanistic approach that leads to similar results and that
has the advantage of being less ad hoc and of making further
predictions.

lll. PHENOMENOLOGICAL MODEL

We consider a closed reactor initially containing nano-
particles N, present in abundance, along with an intermediate
(more ordered and larger) species X, present in small
amounts. Rather than forming the product S directly, the N
particles first accumulate to form the intermediate X. In fact,
the single intermediate in the model represents a spectrum of
species. These species undergo reactions which convert from
one type of intermediate to another, but this will not be mod-
eled here. Instead, we only track the net mass of intermedi-
ates which increases by consuming nanoparticles. In certain
cases, such as zeolite crystallization, it is believed that the
intermediates are the only species possessing the necessary
structure that allows them to bind together to form solid.*®
For this reason, we restrict our analysis to the sequence N
— X — S and do not consider possibilities such as direct con-
version of nanoparticles into solid which may be of rel-
evance to other processes. Such alternatives could easily be
included within the framework described below. The N to X
transition is taken to be an autocatalytic process of order
higher than 1, with a rate »; depending on the abundance of
both N and X. Furthermore, in agreement with available
data, it is stipulated that the X particles accumulate to give
rise to S. The X to S transition occurs at a rate v, that de-
scribes two processes. First, as discussed above, the initially
slow formation of stable clusters is modeled as a probabilis-
tic event occurring at a rate that depends on the supersatura-
tion. Then, as the final product is formed, the rate increases
due to cooperativity. Thus, the total rate of formation of the
product will depend on the concentration of intermediates
and of the product itself. To avoid the presence of stoichio-
metric coefficients, we choose to work with the mass frac-
tions n, x, and s of N, X, and S particles, respectively, since
by mass conservation the rate of loss of n in the N to X
transition will then necessarily be equal to the rate of growth
of x, etc. We obtain in this way the following three coupled
differential equations:
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d

d—l:=—vl(n,X),

d.

d—}; =v,(n,x) — vy(x,s), (1)
= = ()

5= ),

the corresponding kinetic scheme being

N=X (rate v))

(2)
X —S (rate v,).
Notice the conservation condition
n+ x + s = constant. (3)

This relation does not involve the mass fraction of oligomers
as they are believed to play a secondary role in the process
and are therefore neglected.36

To illustrate this behavior, we choose to model the rate
vy as a Verhulst type growth process,l’40

vi(n,x) =kinx - kzxz, (4)

whereby nanoparticles and intermediates react to produce
more intermediate species. Notice that balance is achieved
when n=(k,/k;)x so that the ratio of rate constants can be
fixed by the quasiequilibrium level of the mass fractions
which occur at short times. The value of, say, k; is then
determined by the time the system takes to reach this quasis-
tationary state. Thus, these parameters are completely deter-
mined by the short-time behavior of the system.

The rate v, is broken into two parts: v,(x,s)=v,;(x)
+vy(x,s). The first part depends only on the amount of X
present and represents the nucleation/self-assembly process.
For this, we take the simplest reasonable form v,,(x)
=k;(x—x,), where x, is the equilibrium concentration of X so
that x—x represents the supersaturation. The second part of
the rate represents the effect of cooperativity. We have not
found it possible to model the behavior observed in the zeo-
lite data using higher order terms involving only the concen-
tration of intermediates. Instead, we have found it necessary
to model this as an enhancement in the nucleation rate that
depends on the amount of product already formed, vy,(x,s)
=kyas*(x—x;). In the following, we always assume that x,
=0, which implies that once the product is formed from X, it
will not dissolve again.

Putting these pieces together, the phenomenological
model is given by

dn )
— =—knx + kox*,
dt
(5)
dx )
c kynx — kyx” — kax(1 + as™),
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FIG. 3. Solution of the phenomenological model Eq. (5), with the rate
constants given in the text. The full line is the mass fraction of the nanopar-
ticles, the dotted line is that of the intermediates x(¢), and the broken line is
that of the final product s(z).

d
é = k(1 + as?). 6)

Long induction times are expected to arise when the coop-
erative part of the process is slow, which is to say that k3
<ky,k,. In this case, the model exhibits dynamics on two
different time scales: at short times, the cooperative part can
be neglected with the result that c=n+x is conserved (since
virtually no product forms) and the model can be integrated
to give n(t)=c—x(z) and

kycx(0)
kic = (ky + ky)x(0) (e 1" = 1)

x(1) = (7)

For k,ct> 1, this leads to an equilibrium with x=k,c/k;+k,.
Thus, assuming that ¢ is on the order of 1, we find equilibra-
tion on a time scale determined by k; and with relative frac-
tions of material in the form of N and X determined by k,.
This short-time equilibration is expected to describe the be-
ginning of the self-assembly process when materials are first
mixed, heat is first applied, etc.

At longer times, nucleation and cooperativity contribute
causing the system to evolve away from the short-time
steady state. There is then a new, long-time steady state in
which x—0. At intermediate times, the model must be
solved numerically. Figure 3 shows the result of such a so-
lution starting with initial conditions x(0)=10"* and n(0)
=1-x(0), corresponding to an initial state in which almost
all the mass is in the form of nanoparticles. We take k,
=9k, so that the short-time equilibration leads to n=0.9 and
x=0.1. To illustrate the presence of a long induction time, the
value k3=0.002k, was used so that if 1/k; is on the order of
a minute, then significant self-assembly of the final product
only occurs after a time on the order of 1/k; or about 8 h.
The remaining constants « and w primarily control the speed
with which the system makes the transition from its short-
time steady state to the final long-time steady state. These
values were chosen somewhat arbitrarily to be kza=k; and
m=1.75. The figure shows that after a rapid equilibration, the
system experiences a long period of slow nucleation that is
followed by a rapid transition to the final steady state. The
final transition begins to occur around k;#~ 250 correspond-
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ing to t~4 h for k;=1/min. Qualitatively, this behavior is
similar to that observed in the zeolite experiments of Aerts
et al.*® (compare to Fig. 2).

Finally, we note some specific features of this model that
are motivated by the experimental data shown in Fig. 2.
First, there is no evidence of nucleation of intermediates
from nanoparticles. This is in part based on the fact that the
nanoparticle concentration reaches a finite plateau even
though the intermediates are depleted. Nucleation may
a priori occur on much longer timescales than that of the
experiment, in which case the observed plateau is only qua-
sistationary. This would then suggest adding a term —kyn to
the equation for dn/dt and a corresponding term in the equa-
tion for dx/dt. However, the rate constant would be very
small thus justifying our neglect of this term on these times-
cales. Second, the conversion of intermediates to solid is
irreversible. This is motivated by the fact that dissolution of
zeolite crystals in alkaline medium does not lead to the ex-
traction of silicate species of the size of nanoparticles or
larger*! (which also explains the depletion of X [see Fig.
2(d)]). This leaves open the possibility of an equilibration
between the solid and the oligomers, but, as can be seen from
Fig. 2, such a reaction, if it exists, is of secondary importance
and must take place on longer time scales than that of the
formation of solid from nanoparticles. Besides, the fact that
the crystals eventually grow to macroscopic size suggests
that the formation of solid is, for all practical purposes,
irreversible.

IV. A MORE MICROSCOPIC APPROACH

Having shown that the combination of nucleation/self-
assembly and cooperativity appears to give a reasonable de-
scription of the mechanisms of self-assembly, we now de-
scribe a more concrete realization of this picture. It is
expected that assumptions made here are both more physi-
cally plausible than those made above and more intuitively
appealing. They are

(1) The N=X reaction is the same as assumed in Sec. III.

(2) Formation of new stable clusters of final product occurs
at a rate proportional to the supersaturation.

(3) The initial size of a stable cluster is always the same.

(4) Once formed, clusters grow at a rate proportional to
their surface area and to the supersaturation.

(5) All clusters are geometrically identical.

(6) The formation rate is enhanced by a factor proportional
to the surface area of the existing clusters and to the
supersaturation.

Assumptions 1 and 2 are the same as made previously.
Assumption 3 is perhaps the most problematic: in a simple
fluid, it might be justified on the grounds that growing clus-
ters are presumed to start out as a stable cluster which has a
fixed size (at least for a given supersaturation). This may be
true here. If not, it can be imagined that there is a distribution
of initial cluster sizes and that we are describing an average
over an ensemble of such clusters. Assumption 4 explicitly
introduces cluster growth which was neglected in Sec. III (or,
at least, it was crudely lumped together with cooperativity).
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Assumption 5 is merely a convenience so that we can be
specific concerning geometric factors such as the ratio of
volume to surface area of a cluster. Assumption 6 seems the
simplest, physically plausible way to introduce the idea of
cooperativity.

These models involve the area A and mass or, equiva-
lently, volume V of growing clusters. For spherical clusters,
we of course expect that A~R?,V~R? where R is the ra-
dius. In fact, these scaling relations should hold for three-
dimensional growth, with R some measure of linear size,
regardless of the precise shape of the clusters. However,
other modes are possible and are of relevance for growth of
some protein molecules. For example, suppose that the clus-
ter has the shape of a cylinder with cross sectional area 7r?
and length L. Quasi-one-dimensional growth would occur if
the cylinder lengthens with constant cross section. This
would involve attachment on the flat faces so that the active
growth area would be 2412, a constant, while the volume
would be 772L(f). Quasi-two-dimensional growth would oc-
cur if attachment happened on the curved part of the cylinder
so that the cross sectional area increases with time while the
length remains constant. Then, the active growth area would
be 27rr(f)L and the volume 7rr2(¢)L. All of these cases can be
summarized by the general scaling A=G,R’~!, V=G,RP,
where R is the appropriate linear length scale and G, and Gy
are constant geometric factors. We will use this as our gen-
eral model with the additional provision that D is an integer.
We therefore rule out fractal growth patterns which could
a priori be treated within our general framework but which
do not admit of the mathematical simplifications we utilize
below.

To translate this into a mathematical model for growth,
some new quantities must be defined. Let N(z) be the num-
ber of clusters growing at time ¢ and let m(z,t") be the mass,
at time f, of a cluster nucleated at time #'. Note that by
assumption 3, m(z,1)=m, for some constant m,. Finally, the
total mass of nanoparticles, intermediates, solid, and oligo-
mers is denoted M, and is a constant throughout the experi-
ment. The total mass of solid at time 7, Ms(r), is simply given
by a sum over the masses of all clusters present at time ¢.
A cluster at time ¢ has mass m(t,t’) if it was nucleated at

time t'. The number nucleated at time ¢ is simply
(dN(')/dt")dt', so
| dN(t")
s()=M""| m(t) —dt’, (8)
0 dt

where we assume that there is no final product present at the
beginning of the experiment, s(0)=0. Thus, based on as-
sumption 4, the mass of a cluster grows as

dm(t,t")

=k, xA(t,t'),
Ul JA(t,1')

©)

m(t,t) = myg,

for some constant k,. Finally, the rate of appearance of new
clusters is the sum of a nucleationlike term proportional to
the supersaturation (assumption 2) and a cooperative term
proportional to the total area of the clusters (assumption 6),
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dN(t)
dt

! dN(t")
=Mk x+kx | Alt,t')—
0 dt

dr'. (10)

Note that we include a factor of the total mass in the nucle-
ation term. This is because the number of clusters is an ex-
tensive quantity—as is the total area calculated in the second
term. The number of nuclei generated per unit time must also
be extensive, hence the factor of the mass.

At this point, the model seems much more complicated
than the phenomenological model given above. However, af-
ter some simple manipulations (see Appendix), it can be de-
scribed by a set of three first-order differential equations
which uses the same number of parameters as in the phenom-
enological model,

dn )

— =—knx+kyx-,

dt

dx ds(u)

Ezklnx—kzxz—yx T (11)
du

— = yx.

dt ¥

Here, u(?) is an auxiliary function with the initial condition
u(0)=0. The mass fraction of S is given by s(r)=5(u(r))
where

D
5(u) = (1 + 2)2 a; exp(\u) —Dgu. (12)

i=1

The constants \; are the roots of the Dth order equation

D
b D-1! .
0=\ —az —(D_j)!x (13)

while the coefficients a; are

1
= b, D=2,
W= NN,
(14)
SN
ai=Ba—'&La D=3.
I 2N = \))

The case of general values of D is discussed in the Appendix.
All of this is written in terms of the two dimensionless con-
stants

Dk DGypRk
= amO’ :mo vPR oK, (15)
k, Gk,
and the rate constant
k,G
y= L’ (16)
DROPGU

where mg= vaR{f . Thus, despite the fact that the physical
model involves three parameters, kg, k, and k,, as well as the
initial mass of a stable cluster m, and the total mass M and
the density p, the data can be fit with only three parameters,
a, B, and 7y, which is no more than the phenomenological
model.
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FIG. 4. Solution of the microscopic model Eq. (11), (lines) with the rate
constants given in the text. The full line is the mass fraction of the nanopar-
ticles, the dotted line is that of the intermediates x(¢), and the dashed line is
the mass fraction of the solid s(7).

The present model is now written in terms of rate equa-
tions which are exactly equivalent to Egs. (8)—(10). Still, it
does not have the same form as the phenomenological model
proposed in Sec. III. It is, however, possible to make a cor-
respondence between them. Since both the mass fraction of
S, s(1), and the auxiliary variable u(f) increase monotonically
with time, and since they are related by a simple algebraic
equation, Eq. (12), we can imagine inverting that equation to
get u as a function of 5. An analytic inversion is not possible
but for small # and s; this can be done perturbatively giving
u as a power series in s. (See the Appendix for details.)
Substitution into Eq. (11) and specializing to D=3 gives

dn )
— =—knx + kyx*,
dt

dx ) a+3  a+3,
—=knx—kx"— Byx{ 1+ s — ST+,
dt B 2B

(17)
d

\)
—= 1+
i B?’x(

a+3 a+32 )
S +--n y

g2’

which is very similar to the phenomenological model except
that the single term s* is replaced by an infinite series in s.
Thus the adjustment of w is seen as a way of accounting for
the fact that the infinite sum is being approximated by a
single term.

Figure 4 shows the result of a numerical solution of the
model, Eq. (11). The constants k; and k, have the same
values as used previously. The other constants, a=8750,
B=1.67X1073, and y=6.55X 107k,, were chosen to give
approximately the same point of crossing of the curves and
similar final states as seen in the phenomenological model.
In this case, the plateau resulting from the long induction
time is even more pronounced and the transition to the
steady state is even sharper than in the phenomenological
model.
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To test whether or not cooperativity is really required,
we have attempted to model similar behavior with k,=0.
Typical results are shown in Fig. 5. In this case, there are
only two parameters and we find that it is not possible to
simultaneously capture the long plateau up to k;7~200 and
to capture the crossing of the curves at about k¢~ 310. Fur-
thermore, in contrast to both the data and the model with
cooperativity, the mass fractions do not show plateaus at long
times. As can be seen in the figure, a decrease in 8 by a
factor of 107, with vy adjusted to fix the point at which the
curves cross, has only a small effect on the quality of the fit
to the data. Further, decrease in 8 has little effect on the
length of the plateau. We conclude that the cooperativity is
required to explain the presence of a long induction time.

One advantage of the microscopic approach is that, as
discussed in the Appendix, the size distribution of the clus-
ters is easily calculated. The number of clusters with radius R
or smaller at time ¢, N(R,1), is given by

J. Chem. Phys. 132, 164701 (2010)
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FIG. 5. Comparison of the model without cooperativity and the data. The
solid and dotted lines are the nanoparticle mass fractions and the remaining
curves are the solid mass fraction. The solid and dashed lines were calcu-
lated using 8=5.0 and y=0.0.0034k; the dotted and dashed-dotted lines
correspond to B=5X107% and y=2.66k,. Decreasing B gives a slightly
longer plateau but never as long and sharp as that possible when cooperat-
ivity is present.

if R=(u(r)+1)R,

0. if R=<R,
NR.D) = %(Kf(u(t))—K/(u(t)+l—R£>>, if Ry<R < Ry(u(t)+1)
s1) = 0 0
M o),
("o

The function Mu) is related to the total number of clusters

by N(#)=(M/mg)N(u(r)) and is closely related to 5(u). Its
explicit form is

D

/V(u)zzaj exp(\ju). (18)
j=1

The factor Ry(u(t)+ 1) occurring in the size distribution is the

radius of the largest possible cluster at time ¢ and the pref-

actor M/my is the maximum number of clusters that could be

created from the given amount of material.

V. CONCLUSION

We have shown that a self-organization process involv-
ing self-assembly/nucleation, growth, and cooperativity me-
diated by intermediates consisting of a polydisperse popula-
tion of nanosized particles with varying structure accounts
for the kinetics of self-assembly observed in a class of nano-
sized materials. In particular, the models reproduce a long
quasisteady state and the long waiting times observed as well
as the final apparent equilibrium between nanoparticles and
clusters of final product. Note that the reason for the termi-
nation of the self-assembly process in our model is due to the
depletion of the particles X. At some point, the N— X tran-
sitions cannot compensate for the fast incorporation of X into
the final phase. As new particles can only be formed when

some X is already present, the whole process stops when X is
fully consumed. The model that we have introduced may
account for a broad class of aggregation processes. There is
evidence that the complex mechanism of zeolite synthesis, at
least some features of it, can be described by this model. The
two-step behavior of Fig. 2(a) resembles the evolution of
article populations as depicted in Figs. 3 and 4, especially if
we assume that some part of the (larger) intermediates X
belong to the undetected (solid) phase. Moreover, the extinc-
tion of structured nanoparticles/intermediates which an-
nounces the end of the growth process, seems confirmed by
experiment [compare Q* in Fig. 2(d) to X(¢) in Figs. 3 and 4].

The basic physical mechanisms were modeled at two
levels. First, a purely phenomenological model was pre-
sented which captures the basic ideas in their simplest form.
Then, a more detailed and mechanistic picture was given.
This involved new concepts, such as the distribution of clus-
ter sizes, but in the end was reduced to a system of rate
equations similar to the first model. In fact, it was noted that
the phenomenological model could be viewed as a system-
atic approximation to the more detailed model.

It was shown that the concept of cooperativity plays a
key role in explaining the observations. When cooperativity
is removed from the model, it is not possible to simulta-
neously reproduce the long waiting time at the beginning of
the process and the rapid growth that occurs after long times.
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One point that deserves emphasis is the limited nature of
the assumptions underlying our model. It is based on analo-
gies to the familiar ideas of crystallization39 but we do not
claim that the processes are necessarily the same. The nucle-
ation event that initializes crystallization in a simple fluid is
probably a much simpler process than the self-assembly in
more complex materials such as zeolites. However, it makes
sense that in both cases, the rate at which the process hap-
pens must surely, in a first approximation, be proportional to
the supersaturation. Similarly, the mechanism of cooperativ-
ity in a simple fluid is simply the accelerating growth of
crystallites as they become larger. In some cases, secondary
nucleation on growing crystals is also a factor. In zeolites,
however, it may be a true catalysis of the transformation of
intermediaries from one form to another. Whatever the nano-
scale mechanism, it is plausible that in a first approximation,
the rate must be proportional to the surface area of existing
clusters and to the supersaturation. Our results strongly sug-
gest that some form of cooperativity, whose specifics will
depend on the system at hand, is necessary when long induc-
tion times precede rapid transformation from one state to
another.

It would be interesting to compare the results of our
model to other experimental data®™ and theoretical models
that have been proposed42 for zeolites. Moreover, it is hoped
that this model will provide a framework for pursuing further
experiments. In particular, the model makes a definite pre-
diction concerning the distribution of cluster sizes and it
would seem that this could be checked via experiment.
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APPENDIX: ELABORATION OF THE MODEL
OF SEC. IV

1. Derivation of Equations (11)-(16)

The model for the formation of solid can be summarized

as
[ dN(t")
s(=M lf m(t,t')———dt',
0 dt
dm(t,t") B ,
a =kxA(t,t), (A1)
dN(1)

! dN(t")
=Mkx+kx | Alt,t')—
0

!

dt

The mass and surface area of a growing cluster will be re-
lated in a system-specific way. For example, if the cluster is
spherical, then the area will scale as the square of the radius
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and the mass as its cube. On the other hand, if the growth is
primarily one-dimensional, e.g., a cylinder which grows by
becoming longer, then the mass and area will both increase
in time as the first power of the length. We will assume, in
general, that there is some length scale R(z,t") characterizing
the size of clusters at time ¢ which have nucleated at time ¢
and that the area scales as A(t,1")=G,RP~(¢,t'), where G, is
a geometric factor and D is the dimensionality of the growth
process so that the mass will scale as m(t,t")=pG,LP(t,t").
Then, the equations for the mass and number become

dR(t,t’ k,G
¥=J_Ax, R(t,t)=R0,
dt DpG,
(A2)
dN(1) ! dN(t")
. Mk,x + GAkaxf RP(t,t')———dt'.
0

Note that the initial radius is related to the initial mass of a
cluster by where m,= pGVR(l)) . Next, introduce the variable
u(t)=R(¢,0)—Ry/R,. From

’ k GA ' "\ g
R(t,t") =Ry + =— | x(¢")dt
DpG, J,

we derive the following expression:

R(t,t') =R(2,0) — R(t',0) + Ry = (u(2) — u(t') + R,.

From
du 1 dR(t,0) k,G,4
— == () = (¢
dt "R, di  DpG, *0) = ()
and
dx ds dsdu
E:vl(nx) a’t =vi(nx) - d dt

we have already derived Egs. (11) and (16). However, we
still need to prove Egs. (12)—(15).

Notice that the radius increases monotonically with time.
We can therefore replace time by u(f) and write A/(%)
=(M/mg)N(u(r)) for some function N, (the prefactor being
introduced to simplify later expressions). Using dN/dt
=(M/ mo)(d./V/ du)(du/dr), the equation for the number of
clusters can be rearranged to give

dN(u) N(u’)
n +af (w—u'+1)P! du’, (A3)
with
_ DG k,pRy) _ Dkamo’ _ mODGVpROk,,' (Ad)
k, k, Gk,

An integration by parts gives

% =B+ a./\/(u) +(D - l)afu (u—u"+ l)D—2j\7’(u’)du/’

(AS)

where we assumed A(0)=0 as there is no solid present at
t=0. Continuing to differentiate gives
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d*Nu) dN(w) -
R a + a(D - 1)Nu)
+ agg : ;;: J: (u—u'+ 1PN )du',
(A6)
ENw)  dPMu) dNw) — (D-1)! -
0 =« i +a(D-1) ” +a(D_3)!/\f(u)
+ agg : ‘1‘;: f: (u—u'+ )P N du',
where we used that
d
& ey = i+ [ (a7)

for any function f and constant a. The original integral equa-
tion is therefore equivalent to a simple D-order differential,

D i D-j
d N(u) 2 (D-1)!d U\/(u) (A8)

duP o (D=))! duP

equation with boundary conditions

- dN(u)
MO) =0, ;
du 0
(A9)
dNu) -1 FNw
D Loy oD —|. j=2,...D-1
v |y o (D=0! dw”
The solution is a sum of exponentials,
D
Nuw) =D a;exp(\u), (A10)
J=1
where the constants \; are the roots of
D-1
- aZ ( ) =0. (A11)
j=1 (D ])'
Using Eq. (A9), the coefficients satisfy
D
O = E a;,
j=1
D
B=2Na;, if D>1 (A12)
j=1
D
aﬁ:}‘; Naj, if D>2,
j=

and so on. In general, solution for the coefficients requires
solving this system. For example, for the most interesting
cases of D=2 and D=3, the solution is
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1
=, D = 2,
“= B N,
(A13)
—SUN
o= ﬁ“_m, D=3
I (N = \))
Finally, the mass fraction of solid is
! dN(t")
sty=M""| m(t,t")—-—dt'
0 d
_G u(t) dN')
V”R3J () —u' + DP——du’  (Al4)
m 0 du
or s()=5(u(z)) with
N( ')
su) = f (w—u'+1)P (A15)
as GVpR?)/ my=1. Differentiating gives
d dN(u) " dNu")
—=5(u) = +Df (u—u'+1)P! —du'.
du 0 du
(A16)
Substituting from Eq. (A3),
d dN(u) D(dﬁf(u) )
a4z L2 _ Al7
T T A\ T P (A17)
giving
D)\ -
E(u)=(1+—)./\/(u)—D'§u. (A18)
a a

Insertion of Eq. (A10) into Eq. (A18) results in Eq. (12).

2. Derivation of Equation (17)

In order to make contact with the phenomenological
model, it is useful to develop the solution for the mass frac-
tion as a power series. From Eq. (A6) and the boundary
conditions, it is easily shown that

Nu) =D e u (A19)
n=0
with
co=0, =B, ;= %aﬁ, and for n=3
(A20)
1o 2a 2a
Cp-2 +

Cp="Cp1+
n

nn—1) n(n—l)(n—2)cn_3

Thus,
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3 oo
E:(l +—>E cnu"—SEu
a5 a

=Bu+ %,8(01+3)u2+ é,@(a+3)(a+2)u3 + e

(A21)

We can invert this power series using Lagrange inversion
theorem which states that

b 1 ( u )n §"
— A22
u(s) = % du"™" \s(u)/ |,on! ( )
and results in
1_ (a+3), (2a+7)(a+3)~3
u=—5- S8+ 3 +
B 2B 0B
Finally, to fully eliminate u in favor of s we need
d _ 1 )
—5w) =B+ Bla+3)u+-Bla+3)(a+2)u + -
du 2
1 (a+3
=B+ (a+ 3)3—5(6“ Jo s (A23)

Substitution of this relation into the model Eq. (11) gives the
ratelike form Eq. (17).

3. Size distribution

Let NM(R,t) be the number of clusters of radius R or
smaller. Since the clusters grow monotonically, a cluster of
radius R at time ¢ was nucleated at some definite time
t'(R) <t. Hence, the total number of clusters with radius less
than R is the total number of clusters minus the number with
radius greater than R, which is to say the total number minus
the number already present at time ¢'(R),

MR,1) =[N1) = N(t'(R)O(R,(1) = R)IO(R - Ry),
(A24)

where the step function ®(R-R,,) enforces the condition that
there are no clusters smaller than R, and the step function
O(R,,(1)—R) is required since there is a maximal size corre-
sponding to a cluster nucleated at time =0 (assuming there
are no clusters present at #<<0). Hence, when R>R,,, M(R,?)
is simple equal to the total number of clusters N(7).
Now, the problem is to find ¢#'(R). It is sufficient to note
that  R=R(t,t')=(u(t)-u(t')+1)R,.  Since  N(t'(R))
=(M/m0)/v(u(t’(R)))=(M/mo)./v(u+ 1-R/Ry). Tt then fol-
lows that

N(R,1)=O(R - RO)M(./V(u(t)) —/V(u(t) +1- 1?)
my

0

(Rm(t) - R)) . (A25)

Finally, note that R,, is found by taking #'=0 giving R,
=R(t,0)=(u(r)+1)R, so that
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NR,1)=O(R - R@%(N(u(z)) - K/<u(;) +1- 5)

0

O((u(r) + )Ry - R)) . (A26)
This expression simply means that the number of clusters of
size R or smaller is the total number of clusters created since
the time #'(R) at which clusters of size R were created.

4. No cooperativity

The limit of no cooperativity k,=a=0 is not easy to
extract from the general solution. A simpler approach is to
return to Eq. (A3) which, in this limit, becomes

A du  MpRok,d
O:Mk,,x:Mkny-l—”:&—” (A27)
dt dt k, dt
or
mg
d— Nt ~
™M a0 mpRkdudu

At Atk dr Dt
so that N{u)= Bu. Substituting this into the result for the size

distribution gives

NR.1) = 3( )@(R Ro)(u(t) (u(z)+1-R5>

0

O((u(r) + 1)Ry— R)) . (A28)
The total mass fraction can now be calculated since the mass
of a cluster of radius R is simply G,RPp and the number of
clusters with radius between R and R+dR is (dn(R,t)/dR)dR
and  dn(R,t)/dR=B(M/my)(1/Ry)O(R-Ry)O((u(r)+1)R,
—R). Summing over all radii gives

dJ\/R t)
s(t)——J

1 M @(+DRy | .
= ,8 —GyR"pdR
my Ry

((u() + DP*1 = 1). (A29)

=D+1

In this limit, our result thus reduces to a form that occurs in
the theory of (:rystallization.39
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