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Long Wavelength Instability for Uniform Shear Flow
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Uniform shear flow is a prototype nonequilibrium state admitting detailed study at both the macro-
scopic and microscopic levels via theory and computer simulation. It is shown that the hydrodynamic
equations for this state have a long wavelength instability. This result is obtained first from the Navier-
Stokes equations and shown to apply at both low and high densities. Next, higher order rheological
effects are included using a model kinetic theory. The results are compared favorably to those from
Monte Carlo simulation.

PACS numbers: 47.20.Ft, 05.20.Dd, 05.60.+w, 51.10.+y

In spite of extensive formal theory for nonequilibrium shear rate for a sufficiently long wavelength perturbation.
statistical mechanics, definitive tests and controlled illusMore precisely, solutions to the hydrodynamic equations
trations outside the domain of linear response are rardinearized about the macroscopic state of uniform shear
One such rare case is the macroscopic stataniform  flow show exponential growth in time for wave numbers
shear flow. Like planar Couette flow thecomponent of smaller than a critical wave numbégr, (a) > 0 for a > 0.
the average flow velocity varies linearly in thedirection.  For the case of zero shear rate these linear equations
However, the flow is generated by periodic boundary condefine the hydrodynamic modes which describe how small
ditions in the local Lagrangian frame [1-3] leading to aperturbations of the velocity, temperature, and density
uniform temperature and pressure, with a monotonic infields decay back to equilibrium. These are the two
crease of the temperature. This is in contrast to planasound modes, a heat mode, and two shear modes. In a
Couette flow, driven by local boundary conditions, for similar way the hydrodynamic modes describing response
which the temperature is nonuniform but stationary [4].to perturbations of any reference stationary state can be
The advantage of uniform shear flow is that the boundidentified. If all such modes decay in time, the reference
ary conditions allow application of computer simulation stationary state is referred to as linearly stable; conversely,
methods with periodic imaging to emulate bulk effectsif one or more modes leads to an increasing amplitude in
for small systems, just as in the simulation of equilibriumtime the reference state is linearly unstable.
states. In addition, there are many theoretical advantages The hydrodynamic equations are approximations to the
such as the absence of a hydrodynamic boundary layemore general local conservation laws for the mass, energy,
The problems associated with increasing temperature caand momentum densities,
be controlled by the addition of a thermostat so that a T —
steady state with the desired flow field results. During the Din + ¥V -U =0, (1)
past fifte_en years uniform shear row_has been thg fpcus Die+(e+pV-U+V-S+P;oU=w, (2
of attention in most studies of classical nonequilibrium ‘ ‘
statistical mechanics by a wide range of theoretical and D,U; + pflaip + pfla].pl.j =0, (3
simulation methods [5,6]. It is one of the few means by
which rheology and transport far from equilibrium can bewhereD, = 9, + U - V is the material derivative. The
studied at the fundamental level. More recently, simulamomentum density is related to the flow fidldby g =
tions of uniform shear flow have provided the test for newpU, p = mn is the mass density/{ is the mass and is
concepts of nonequilibrium variational principles [7] andthe number density), andis the internal energy density.
for the relationship between transport and chaotic HamilThe pressurep is not an independent variable but is
tonian flows [8]. definedto have the same functional relationshipitande

Although it has been known for more than ten yearsas in equilibrium. The inhomogeneous term on the right-
that uniform shear flow undergoes a transition to arhand side of the energy equation is due to an external
ordered state at large shear rates [9], its stability at smallevonconservative force representing the thermostat. There
shear rates has not been questioned. Our objective heaee several thermostats that have been used in simulations
is to report an instability of uniform shear flow at any and theory. Here the thermostat is fixed by a force on
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each particle proportional to the velocity relative to the p;; = —(3,U; + 9,;U; — %V -U8;;) — KV - Uéy;,
local flow field. Consequently, its average value is zero, 5
and the effect of this force occurs only in the energy (5)

equation. The proportionality constant is determined bXNhere)L 1, and  are the thermal conductivity, shear

requiring stationarity for the uniform shear flow state. . . - . .
. . . viscosity, and bulk viscosity, respectively. These are
The resulting termw in Eq. (2) is the same as that ; ) o o .

. : X ' . the leading terms in a “uniformity” expansion ordered
obtained using the thermostat for simulations. Finally, ccording to spatial aradients of the hvdrodvnamic fields
the irreversible heat and momentum fluxes are denoteﬁo] It ig con\F/)enien? to choose densi%/ andytem erature
by S and P;;, respectively. These equations are exact " X y P

. ; : ; . - ~as independent thermodynamic parameters and to denote
but incomplete until the irreversible fluxes are specifie he deviations in the hvdrodvnamic parameters from their
in terms of the hydrodynamic fields. Nevertheless, it yarocy P

is possible to define the state of uniform shear ﬂOanIues for uniform shear flow by, = {on, 6T, 8U}.

without their detailed form. Steady-state uniform sheanAlSO’ we consider a fluid of hard spheres to specify the

flow is defined by constant (in both space and time)equatlons of state; = ¢(n,T) andp = p(n,T). These

energy and mass densiti€gy, po}, and a flow velocity are determined from the Percus-Yevick equation [11]
o . which is known to be accurate over the entire fluid

whose only nonvanishing componenttg, = ay. The hase. Combining Egs. (1)—(5) and retaining terms onl

constant is the shear rate and provides the single controf’ : g =as. 9 y

parameter measuring the deviation from equilibrium. The P through linear order i, identifies the hydrodynamic

boundary conditions are simple periodic conditions infelg\lfvatlopsef%rc)jmﬂ: pggtﬁéﬁ%fsnsarzb?#; dlém;c))(rnacihgar
the local Lagrangian coordinate framé,= r — Uy(r)z. : y P y

Substitution of these assumptions ferp, and U into looking for solutions of the form
the above conservation laws shows they are all satisfied _ - R
if S and P;; are also uniform and the parameter of the Ya(r, 1) = Salk, ) explik - 1), ©

thermostat in the energy equation is chosen such th%here $.(k, 1) is the amplitude of a mode with wave-
wo = aP()xy.

Consider small deviations of the hydrodynamic vari—length’zw/k' To simplify the analysis and to focus on

bles f i i h f tate. To b i .tthe instability, the following is restricted to the special
apies trom the uniiorm shear flow state. 10 be expiici casek, = k, = 0, i.e., spatial perturbations only along

it is necessary to specify the heat_ and momentum fI_uxe§he velocity gradient. The linear equations fy(k, 7)
We first consider the case for which all spatial gradlentsare then of the form ’
are small, including the shear rate Then the heat flux is

given by Fpur!ers I_aw, and the momentum flux is given 0, 5a(k.1) + Map(a. K)(k,1) = 0 )
by Newton'’s viscosity law,
S = —AVT, (4) with
|
0 0 0 nik 0
cia? (n/2e)a® + Dk*> —(2nT/e)aik (pT/e)ik 0
M(a,k) = | —v,aik —(v/2T)aik vk? a 0 |, (8)
(pn/p)ik (p/pT)ik 0 yk? 0
0 0 0 0 vk?
I
where ¢, = —pv,T/e, D =AT/e, v=mn/p, y= Where pc>=[2pQ2 + nv,/v) + np,], pcic, =
v + «k/p, andz, = dz/on. n@Bvp, — 2pvy), (pv)*dy = p[2eQQv + nv,) — vp],
The dispersion relations obtained from@&t— M) =  and2d, = (3» + y — ¢,). These are positive constants

0 give five hydrodynamic modes, (a,k). If the real depending only on the density and temperature of the
parts of one or more modes become negative for someeference state. The first three modes are stable, whereas
values ofk anda then solutions to Eq. (7) grow in time, the complex conjugate pair; and s4 are unstable for
and the uniform shear flow state is linearly unstablea® < d;/d,. This is a primary observation of our
Direct calculation shows this is the case for sufficientlywork  Within the limitations of the well-established
small k& for any fixed and finitea. The hydrodynamic Navier-Stokes equations (e.g., smalland smalla) the
modes for finitea and asymptotically smalk can be equations are unstable for a reference state with suffi-
calculated explicitly to ordek?. Four modes vanish as ciently small shear rate. Conversely, a similar expansion
k — 0 while one is finite, of the eigenvalues in powers af at fixed k shows the
instability at all shear rates for sufficiently small These
so— vk:, s = (n/2e)a’, s — ok, (9) asymptotic results are confirmed by an exact evaluation
of the eigenvalues from (8), using the Percus-Yevick
53 =85 — ick — (dy — dra?) (k/a)?, (10) approximation for the virial equation of state [11] and
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using the Enskog kinetic theory to specify transport coefbasis, we expect that hydrodynamic equations outside the
ficients [12]. The results are shown in Fig. 1, indicatingNavier-Stokes limit derived from the BGK model should
the line in thek-a plane separating stable (above) fromprovide a faithful representation of those that would be
unstable (below) dynamics at three different densitieobtained from the Boltzmann equation. These expecta-
(n* = no?, whereo is the hard sphere diameter). The tions for the BGK model have been confirmed in the case
instability is qualitatively the same for all densities. of shear flow by both analytical and numerical compari-
The Navier-Stokes approximation for the heat andsons with the Boltzmann equation [13]. It is remarkable
momentum fluxes requires < inverse mean free path that the BGK equation can be solved exactly to determine
anda < inverse mean free time. Since the reference statthe reference state distribution function for uniform shear
is generated by the shear, it is possible that higher orddlow, at arbitrary shear rate [14]. Using this known
contributions ina might remove the long wavelength result, the heat and momentum fluxes in the conservation
instability. To address this question, it would be desirabldaws (1)—(3) can be determined to leading order in the
to derive the linear hydrodynamic equations from thedeviations of the hydrodynamic fields from uniform shear
Boltzmann-Enskog kinetic equation without this limi- flow. The resulting hydrodynamic equations linearized
tation to smalla. However, no solution to this kinetic about the reference state are again valid only to order
equation is known, for either the reference uniformk?, but now there is n@ priori restriction on the value
shear flow state or deviations from it. Consequently, weof the shear rate; the form of Eq. (7) is unchanged,
consider the case of low density for which the Boltzmanrbut the matrix elements a#/,z(a, k) are not restricted
equation applies. While no solutions to this kinetic equato ordera?. This new shear rate dependence leads to
tion are known either, it is well established that closelyqualitative differences from the Navier-Stokes equations
related “kinetic models” provide practical and accurate(e.g., rheological effects such as shear thinning, normal
representations of solutions to the Boltzmann equatiorstresses). The single parameter of this kinetic model is
Here, we chose the nonlinear Bhatnagar-Gross-Krookhe average collision rate for the Boltzmann equation, and
(BGK) kinetic model obtained by replacing the Boltzmannall dependence on the interaction potential occurs only
collision operator with an average collision frequency,through the temperature dependence of this parameter.
times the deviation of the distribution function from a lo- We have chosen the simplest case of Maxwell molecules,
cal equilibrium distribution. The parameters of this local V(r) ~ r~#, for which it is a constant. All transport
equilibrium distribution are chosen to enforce the exactoefficients of these generalized linear hydrodynamic
conservation laws. As a consequence, the Navier-Stokexjuations can be calculated exactly as functions of the
hydrodynamic equations obtained from the BGK modelshear rate, and the eigenvaluesifg(a, k) can be deter-
are the same as those from the Boltzmann equation—oniyined just as in the case of the Navier-Stokes equations.
the values of the transport coefficients differ. On thisA long wavelength instability for any value of the shear
rate is found again, now including valuesmofvell outside
the limitations of the Navier-Stokes equation, cf. Fig. 1.
0.6 We conclude that the instability observed in (10) is robust
and is not an aberration resulting from the approximations
(4) and (5).
.- The extension of the hydrodynamic equations to larger
o shear rates using the BGK model allows comparison
04 F e with Bird’s direct simulation Monte Carlo method [6,15].
o There have been significant tests of this method for uni-
s form shear flow [13]. The method is so accurate and effi-
' cient that virtually all practical applications of gas kinetic
theory far from equilibrium now use it. We have used
a direct numerical solution to the BGK kinetic equation
to test the stability analysis without the intermediate step
of constructing a hydrodynamic description. The solution
is constructed as follows. First, the volume is partitioned

0.2

0.1 : X o . i
into cells, andN particles are distributed with positions
and velocities according to a specified initial distribution.
0.0 Next, at each finite time step < mean free time, a stream-
0.0 0.4 0.8 1.2 1.6

ing and collision stage are computed. The particles are
moved in straight lines to new positions at time- 7. For

FIG. 1. Critical lines for stability determined from Eq. (8) : o N .
atn® — 0 (solid curve)n* = 0.2 (dotted curve), and* — 0.4 each particle, the probability of a collision is determined

(dashed curve). Also shown are the results from the BGK3S the (local) CO'_”SiQ” frequency times If a Collision
kinetic model forn™ = 0 (dash-dotted curve). All are in units Occurs, the velocity is replaced by a random velocity sam-

of the mean free path and mean free time. pled from the local equilibrium distribution. This collision
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ux Monte Carlo simulations to very long times to see if a final
stationary state is regained. At high densities, molecular
0.8 dynamics simulations appear to be stable, except at very
large shear rates where a transition to an ordered state

0.4 occurs [9]. ltis likely that the long wavelength instability

considered here has not been seen due to the finite system
sizes considered, i.&,> 27 /L [16]. We plan to explore
longer wavelengths at high densities using both molecular

04 dynamics and an extension of the Bird method to the dense
(@ fluid Enskog equation [17].
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