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Uniform shear flow is a prototype nonequilibrium state admitting detailed study at both the mac
scopic and microscopic levels via theory and computer simulation. It is shown that the hydrodynam
equations for this state have a long wavelength instability. This result is obtained first from the Navi
Stokes equations and shown to apply at both low and high densities. Next, higher order rheolog
effects are included using a model kinetic theory. The results are compared favorably to those f
Monte Carlo simulation.

PACS numbers: 47.20.Ft, 05.20.Dd, 05.60.+w, 51.10.+y
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In spite of extensive formal theory for nonequilibriu
statistical mechanics, definitive tests and controlled ill
trations outside the domain of linear response are r
One such rare case is the macroscopic state ofuniform
shear flow. Like planar Couette flow thex component of
the average flow velocity varies linearly in they direction.
However, the flow is generated by periodic boundary c
ditions in the local Lagrangian frame [1–3] leading to
uniform temperature and pressure, with a monotonic
crease of the temperature. This is in contrast to pla
Couette flow, driven by local boundary conditions, f
which the temperature is nonuniform but stationary [
The advantage of uniform shear flow is that the bou
ary conditions allow application of computer simulatio
methods with periodic imaging to emulate bulk effec
for small systems, just as in the simulation of equilibriu
states. In addition, there are many theoretical advanta
such as the absence of a hydrodynamic boundary la
The problems associated with increasing temperature
be controlled by the addition of a thermostat so tha
steady state with the desired flow field results. During
past fifteen years uniform shear flow has been the fo
of attention in most studies of classical nonequilibriu
statistical mechanics by a wide range of theoretical a
simulation methods [5,6]. It is one of the few means
which rheology and transport far from equilibrium can
studied at the fundamental level. More recently, simu
tions of uniform shear flow have provided the test for n
concepts of nonequilibrium variational principles [7] an
for the relationship between transport and chaotic Ham
tonian flows [8].

Although it has been known for more than ten yea
that uniform shear flow undergoes a transition to
ordered state at large shear rates [9], its stability at sma
shear rates has not been questioned. Our objective
is to report an instability of uniform shear flow at an
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shear rate for a sufficiently long wavelength perturbati
More precisely, solutions to the hydrodynamic equatio
linearized about the macroscopic state of uniform sh
flow show exponential growth in time for wave numbe
smaller than a critical wave numberkcrsad . 0 for a . 0.
For the case of zero shear rate these linear equat
define the hydrodynamic modes which describe how sm
perturbations of the velocity, temperature, and den
fields decay back to equilibrium. These are the t
sound modes, a heat mode, and two shear modes.
similar way the hydrodynamic modes describing respo
to perturbations of any reference stationary state can
identified. If all such modes decay in time, the referen
stationary state is referred to as linearly stable; convers
if one or more modes leads to an increasing amplitude
time the reference state is linearly unstable.

The hydrodynamic equations are approximations to
more general local conservation laws for the mass, ene
and momentum densities,

Dtn 1 n=== ? U ­ 0 , (1)

Dte 1 se 1 pd=== ? U 1 === ? S 1 Pij≠iUj ­ w , (2)

DtUi 1 r21≠ip 1 r21≠jPij ­ 0 , (3)

whereDt ; ≠t 1 U ? === is the material derivative. The
momentum density is related to the flow fieldU by g ­
rU, r ­ mn is the mass density (m is the mass andn is
the number density), ande is the internal energy density
The pressurep is not an independent variable but
definedto have the same functional relationship ton ande
as in equilibrium. The inhomogeneous term on the rig
hand side of the energy equation is due to an exte
nonconservative force representing the thermostat. T
are several thermostats that have been used in simula
and theory. Here the thermostat is fixed by a force
© 1996 The American Physical Society
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each particle proportional to the velocity relative to t
local flow field. Consequently, its average value is ze
and the effect of this force occurs only in the ener
equation. The proportionality constant is determined
requiring stationarity for the uniform shear flow stat
The resulting termw in Eq. (2) is the same as tha
obtained using the thermostat for simulations. Fina
the irreversible heat and momentum fluxes are deno
by S and Pij , respectively. These equations are ex
but incomplete until the irreversible fluxes are specifi
in terms of the hydrodynamic fields. Nevertheless,
is possible to define the state of uniform shear fl
without their detailed form. Steady-state uniform she
flow is defined by constant (in both space and tim
energy and mass densities,he0, r0j, and a flow velocity
whose only nonvanishing component isU0x ­ ay. The
constanta is the shear rate and provides the single con
parameter measuring the deviation from equilibrium. T
boundary conditions are simple periodic conditions
the local Lagrangian coordinate frame,r0 ­ r 2 U0srdt.
Substitution of these assumptions fore, r, and U into
the above conservation laws shows they are all satis
if S and Pij are also uniform and the parameter of t
thermostat in the energy equation is chosen such
w0 ­ aP0xy.

Consider small deviations of the hydrodynamic va
ables from the uniform shear flow state. To be expli
it is necessary to specify the heat and momentum flu
We first consider the case for which all spatial gradie
are small, including the shear ratea. Then the heat flux is
given by Fourier’s law, and the momentum flux is give
by Newton’s viscosity law,

S ­ 2l===T , (4)
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Pij ­ 2hs≠iUj 1 ≠jUi 2
2
3 === ? Udijd 2 k=== ? Udij ,

(5)

where l, h, and k are the thermal conductivity, shea
viscosity, and bulk viscosity, respectively. These a
the leading terms in a “uniformity” expansion ordere
according to spatial gradients of the hydrodynamic fie
[10]. It is convenient to choose density and temperatu
as independent thermodynamic parameters and to de
the deviations in the hydrodynamic parameters from th
values for uniform shear flow byya ; hdn, dT, dUij.
Also, we consider a fluid of hard spheres to specify t
equations of state,e ­ esn, Td and p ­ psn, Td. These
are determined from the Percus-Yevick equation [1
which is known to be accurate over the entire flu
phase. Combining Eqs. (1)–(5) and retaining terms o
up through linear order inya identifies the hydrodynamic
equations for small perturbations about uniform she
flow. The boundary conditions are made explicit b
looking for solutions of the form

yasr, td ­ ỹask, td expsik ? r0d , (6)

where ỹask, td is the amplitude of a mode with wave
length,2pyk. To simplify the analysis and to focus o
the instability, the following is restricted to the speci
casekz ­ kx ­ 0, i.e., spatial perturbations only alon
the velocity gradient. The linear equations forỹask, td
are then of the form

≠t ỹask, td 1 Mabsa, kdỹbsk, td ­ 0 (7)

with
Msa, kd ­

266664
0 0 0 nik 0

c1a2 shy2eda2 1 Dk2 2s2hTyedaik spTyedik 0
2nnaik 2sny2Tdaik nk2 a 0

spnyrdik spyrT dik 0 gk2 0
0 0 0 0 nk2

377775 , (8)
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where c1 ; 2rnnTye, D ; lTye, n ; hyr, g ;
4
3 n 1 kyr, andzn ; ≠zy≠n.

The dispersion relations obtained from detssI 2 Md ­
0 give five hydrodynamic modes,sasa, kd. If the real
parts of one or more modes become negative for so
values ofk anda then solutions to Eq. (7) grow in time
and the uniform shear flow state is linearly unstab
Direct calculation shows this is the case for sufficien
small k for any fixed and finitea. The hydrodynamic
modes for finitea and asymptotically smallk can be
calculated explicitly to orderk2. Four modes vanish a
k ! 0 while one is finite,

s0 ! nk2, s1 ! shy2eda2, s2 ! c2k2, (9)

s3 ­ sp
4 ! ick 2 sd1 2 d2a2d skyad2, (10)
e

.

where rc2 ­ f2ps2 1 nnnynd 1 npng, rc2c2 ­
ns3npn 2 2pnnd, srnd2d1 ­ pf2es2n 1 nnnd 2 npg,
and2d2 ­ s3n 1 g 2 c2d. These are positive constant
depending only on the density and temperature of
reference state. The first three modes are stable, whe
the complex conjugate pairs3 and s4 are unstable for
a2 , d1yd2. This is a primary observation of our
work: Within the limitations of the well-established
Navier-Stokes equations (e.g., smallk and smalla) the
equations are unstable for a reference state with su
ciently small shear rate. Conversely, a similar expans
of the eigenvalues in powers ofa at fixed k shows the
instability at all shear rates for sufficiently smallk. These
asymptotic results are confirmed by an exact evaluat
of the eigenvalues from (8), using the Percus-Yevi
approximation for the virial equation of state [11] an
2703
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using the Enskog kinetic theory to specify transport coe
ficients [12]. The results are shown in Fig. 1, indicatin
the line in thek-a plane separating stable (above) from
unstable (below) dynamics at three different densiti
(np ; ns3, wheres is the hard sphere diameter). Th
instability is qualitatively the same for all densities.

The Navier-Stokes approximation for the heat an
momentum fluxes requiresk ø inverse mean free path
anda ø inverse mean free time. Since the reference st
is generated by the shear, it is possible that higher or
contributions in a might remove the long wavelength
instability. To address this question, it would be desirab
to derive the linear hydrodynamic equations from th
Boltzmann-Enskog kinetic equation without this limi
tation to smalla. However, no solution to this kinetic
equation is known, for either the reference unifor
shear flow state or deviations from it. Consequently, w
consider the case of low density for which the Boltzman
equation applies. While no solutions to this kinetic equ
tion are known either, it is well established that close
related “kinetic models” provide practical and accura
representations of solutions to the Boltzmann equatio
Here, we chose the nonlinear Bhatnagar-Gross-Kro
(BGK) kinetic model obtained by replacing the Boltzman
collision operator with an average collision frequenc
times the deviation of the distribution function from a lo
cal equilibrium distribution. The parameters of this loc
equilibrium distribution are chosen to enforce the exa
conservation laws. As a consequence, the Navier-Sto
hydrodynamic equations obtained from the BGK mod
are the same as those from the Boltzmann equation—o
the values of the transport coefficients differ. On th

FIG. 1. Critical lines for stability determined from Eq. (8
at np ­ 0 (solid curve),np ­ 0.2 (dotted curve), andnp ­ 0.4
(dashed curve). Also shown are the results from the BG
kinetic model fornp ­ 0 (dash-dotted curve). All are in units
of the mean free path and mean free time.
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basis, we expect that hydrodynamic equations outside
Navier-Stokes limit derived from the BGK model shoul
provide a faithful representation of those that would b
obtained from the Boltzmann equation. These expec
tions for the BGK model have been confirmed in the ca
of shear flow by both analytical and numerical compa
sons with the Boltzmann equation [13]. It is remarkab
that the BGK equation can be solved exactly to determ
the reference state distribution function for uniform she
flow, at arbitrary shear rate [14]. Using this know
result, the heat and momentum fluxes in the conservat
laws (1)–(3) can be determined to leading order in t
deviations of the hydrodynamic fields from uniform she
flow. The resulting hydrodynamic equations linearize
about the reference state are again valid only to ord
k2, but now there is noa priori restriction on the value
of the shear rate; the form of Eq. (7) is unchange
but the matrix elements ofMabsa, kd are not restricted
to order a2. This new shear rate dependence leads
qualitative differences from the Navier-Stokes equatio
(e.g., rheological effects such as shear thinning, norm
stresses). The single parameter of this kinetic mode
the average collision rate for the Boltzmann equation, a
all dependence on the interaction potential occurs o
through the temperature dependence of this parame
We have chosen the simplest case of Maxwell molecul
V srd , r24, for which it is a constant. All transport
coefficients of these generalized linear hydrodynam
equations can be calculated exactly as functions of
shear rate, and the eigenvalues ofMabsa, kd can be deter-
mined just as in the case of the Navier-Stokes equatio
A long wavelength instability for any value of the shea
rate is found again, now including values ofa well outside
the limitations of the Navier-Stokes equation, cf. Fig.
We conclude that the instability observed in (10) is robu
and is not an aberration resulting from the approximatio
(4) and (5).

The extension of the hydrodynamic equations to larg
shear rates using the BGK model allows comparis
with Bird’s direct simulation Monte Carlo method [6,15]
There have been significant tests of this method for u
form shear flow [13]. The method is so accurate and e
cient that virtually all practical applications of gas kineti
theory far from equilibrium now use it. We have use
a direct numerical solution to the BGK kinetic equatio
to test the stability analysis without the intermediate st
of constructing a hydrodynamic description. The solutio
is constructed as follows. First, the volume is partitione
into cells, andN particles are distributed with positions
and velocities according to a specified initial distributio
Next, at each finite time stept , mean free time, a stream
ing and collision stage are computed. The particles a
moved in straight lines to new positions at timet 1 t. For
each particle, the probability of a collision is determine
as the (local) collision frequency timest. If a collision
occurs, the velocity is replaced by a random velocity sa
pled from the local equilibrium distribution. This collision
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FIG. 2. Time evolution of (a)dUxstd and (b) dUystd for
a ­ 0.5 and k ­ 0.1 in units of the inverse mean free tim
and mean free path.

calculation is performed for all particles, and the who
process is iterated for many time steps.

To confirm our hydrodynamic analysis of the instabili
based on the BGK equations, an initial state for t
hydrodynamic variables is chosen withk ­ 0.1 anda ­
0.5 (in units of the inverse mean free path and tim
respectively). This corresponds to conditions for whi
the linear hydrodynamic equations are unstable. The
unstable modes have complex eigenvalues so they lea
an oscillatory time dependence with growing amplitud
The hydrodynamic fields are constructed directly fro
an expansion in the eigenvectors ofMabsa, kd. To
illustrate this dynamics we have chosen initial conditio
such thatdUys0d couples only to the unstable mode
while dUxs0d couples to both stable and unstable mod
Figure 2 shows a comparison of the results fordUxstd
and dUystd as a function of time with those obtaine
from a Monte Carlo simulation of the BGK kinetic
equation using the Bird method. The good agreem
shows that the instability is not a consequence of
assumptions behind the hydrodynamic calculations,
also that these equations provide an accurate descrip
of the initial stages of the instability. We have perform
the simulations for times an order of magnitude long
than that shown. The maxima and minima contin
to grow, although differences between the theory a
simulation become more significant. This is expect
since the linear hydrodynamic analysis is limited to sm
amplitudes.

It remains to understand the consequences of this l
wavelength instability. We plan to extend the low dens
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Monte Carlo simulations to very long times to see if a fin
stationary state is regained. At high densities, molecu
dynamics simulations appear to be stable, except at v
large shear rates where a transition to an ordered s
occurs [9]. It is likely that the long wavelength instabilit
considered here has not been seen due to the finite sy
sizes considered, i.e.,k . 2pyL [16]. We plan to explore
longer wavelengths at high densities using both molecu
dynamics and an extension of the Bird method to the de
fluid Enskog equation [17].
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