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A simple model is proposed for the direct correlation function �DCF� for simple fluids consisting of
a hard-core contribution, a simple parametrized core correction, and a mean-field tail. The model
requires as input only the free energy of the homogeneous fluid, obtained, e.g., from thermodynamic
perturbation theory. Comparison to the DCF obtained from simulation of a Lennard-Jones fluid
shows this to be a surprisingly good approximation for a wide range of densities. The model is used
to construct a density functional theory for inhomogeneous fluids which is applied to the problem
of calculating the surface tension of the liquid-vapor interface. The numerical values found are in
good agreement with simulation. © 2007 American Institute of Physics. �DOI: 10.1063/1.2753500�

I. INTRODUCTION

The modern understanding of liquid-vapor interfaces be-
gins with the seminal paper of van der Waals, in which he
introduced what is now known as the square-gradient ap-
proximation to the free energy of inhomogeneous systems
and the mean-field approximation.1,2 That work was devel-
oped from a thermodynamic perspective which has been su-
perseded by more fundamental, statistical mechanical
approaches.3–5 In the modern approach, it is possible to give
formally exact expressions for the free energy in terms of
structural quantities such as the pair-distribution function and
the direct correlation function. In practice, these expressions
must be approximated leading to a compromise between the
two goals of simplicity and accuracy. Given modern compu-
tational resources, simplicity is not an overriding constraint
when dealing with simple fluids governed by spherically
symmetric pair potentials, but it quickly does become an
issue for more complex systems such as solids, fluids gov-
erned by anisotropic potentials, extended molecules, etc.
When confronted with these types of complications, there is
often little choice than to revert to the most primitive mean-
field models and to hope that the qualitative picture obtained
is sufficient. The objective of the present work is to present
an approach which is little more complex than the simplest
mean-field theory and yet which gives quantitatively accu-
rate results.

The original theory of van der Waals was based on two
basic approximations. First is what in modern language
would be called a mean-field approximation, whereby the
microscopic structure of the liquid is neglected and the only
spatial variation taken into consideration is a continuous
variation of the density. This means that the interaction en-
ergy for a system of molecules interacting via a pair potential
can be expressed in the form

�
V
�

V

��r1���r2�v�r12�dr1dr2, �1�

where V is the volume of the system, ��r� is the local den-
sity, and v�r12� is the pair potential. The second is a gradient

expansion about the center of mass. This model was also
discussed by Cahn and Hilliard.6 Today, there are two more
or less fundamental approaches to the description of inhomo-
geneous liquids.3,4 The oldest are the integral equation meth-
ods where the objective is to solve the Ornstein-Zernike
equation, which relates the pair-distribution function to the
direct correlation function, subject to an independent closure
condition. This approach is one of the most reliable methods
for calculating the properties of simple fluids. It is, however,
intrinsically somewhat complex since the fundamental ob-
jects being determined, e.g., the pair-distribution function,
are two-body functions. The main alternatives are density
functional theories which are somewhat simpler since the
local density is a one-point function. The utility of density
functional theory �DFT� for the description of liquid-vapor
interfaces was first demonstrated by the work of Ebner et al.7

They used an approximate DFT which was, as they them-
selves later wrote,8 somewhat ad hoc. The key quantity
needed to evaluate the theory was the direct correlation func-
tion �DCF� of the homogeneous fluid which was obtained
from the Percus-Yevick integral theory. However, for inter-
facial calculations, the DCF was needed for all densities
from that of the liquid to that of the vapor, which is prob-
lematic as the integral theory does not possess solutions in
the two-phase region. Ebner et al. were therefore forced to
interpolate the DCF’s from the region where the integral
equation could be solved through the region without a solu-
tion. The resulting values for the surface tension of a
Lennard-Jones fluid were, in fact, quite reasonable.

Since this early work, the DFT approach to interfacial
problems has developed primarily along two different lines.
One is based on the perturbative expression for the free en-
ergy in terms of a hard-sphere contribution and a perturba-
tive correction involving the potential and the direct correla-
tion function of hard spheres �see, e.g., Refs. 9 and 10�. This
approach has the advantage that it reduces to the rather ac-
curate perturbative expression for the free energy for the ho-
mogeneous fluids and therefore gives a good description of
the phase diagram. Indeed, as discussed in Ref. 10, this is
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one of the main motivations for using this model. The second
approach is more in line with the work of Ebner et al. and is
based on the DCF and the exact relations between the DCF
and the free energy. A good example is the recent work of
Tang and Wu11,12 and Tang13 who approximated the DCF by
that obtained from an approximate solution of the mean-
spherical approximation. �In the mean-spherical approxima-
tion, the Ornstein-Zernike equation is solved by assuming
that there is an effective hard core inside of which the pair-
distribution function vanishes and outside of which the DCF
is equal to −�v�r12��. To further simplify, Tang approximates
the Lennard-Jones interaction by a sum of Yukawa potentials
so that the resulting mean-spherical model can be solved
analytically both exactly14 and within the first order
approximation.15 This is then used in an approximate DFT,
somewhat different from that of Ebner et al., to calculate a
variety of properties of inhomogeneous Lennard-Jones fluids
including the surface tension of the liquid-vapor interface13

and the structure of confined fluids.12,16 Since surface ten-
sion, in particular, is well known to be very sensitive to the
range of the potential, the Yukawa’s, which are short ranged,
must eventually be replaced by the original potential in order
to account for the long-ranged contributions to the surface
tension.

The perturbation-theory approach requires as input the
pair-distribution function of the reference system, usually
hard spheres for simple fluids. Even when the reference fluid
is hard spheres, the pair-distribution function is not an easy
object to work with �see Ref. 10� and the calculations would
be even more difficult for more complex interactions. On the
other hand, the difficulty with the DCF-based theories is that
there have been few options for getting the DCF required in
the theories: either the mean-field approximation such as Eq.
�1� above is used �which is very crude� or the full machinery
of liquid state theory is used �which is expensive�. However,
given that even when the latter approach is used, quite ad
hoc corrections, such as the interpolation of Ebner et al., are
needed, suggesting that the effort extended to try to produce
as good a DCF as possible is perhaps unnecessary. Instead,
the work of Tang et al. suggests that the most important
ingredient beyond the mean-field form is that the underlying
equation of state should be reasonably accurate. The present
work aims to test this intuition by studying a minimal exten-
sion of the mean-field model for the DCF designed so as to
reproduce a known equation of state. Specifically, the model
proposed here consists of a hard core, described by the fun-
damental measure DFT,17–20 a mean-field type tail, and a
simple polynomial correction within the core with param-
eters chosen to give the desired equation of state. The utility
of the model lies in the fact that the equation of state of the
homogeneous bulk fluid is much easier to determine than are
structural properties such as the DCF and the pair-
distribution function, and it is much less sensitive to the de-
tails of the interaction potential. In this work, for application
to the Lennard-Jones fluid, first order thermodynamic pertur-
bation theory is used. This approach represents a relatively
minimal extension of the mean-field model, and as shown
below, even a relatively crude model gives good results for
the surface tension of the liquid-vapor interface. It is in keep-

ing with the idea that the DCF should be a relatively simple
object as illustrated, e.g., by the contrast in hard spheres as
described by the Percus-Yevick approximation where the
pair-distribution function is a complicated function with a lot
of structure, whereas the DCF is just a cubic polynomial
within the hard core. The same is true in the analytic solution
of the mean-spherical approximation for a sum of
Yukawas.14

In Sec. II, the basic elements of density functional theory
are reviewed. A plausible, but uncontrolled, approximation is
introduced to give a framework suitable for practical appli-
cations. It is shown that further approximations give the
functional used by Ebner et al.7 as well as that introduced by
Tang.13 Because it is still often discussed in the literature,
see, e.g., Refs. 21 and 22, the square-gradient approximation
is also described. Section III discusses the extended mean-
field approximation for the DCF. Different versions are de-
scribed depending on how accurately the tail of the DCF is
modeled. These are compared to the simulation data of
Llano-Restrepo and Chapman23 and it is demonstrated that
these models are in good agreement with the simulations. In
Sec. IV. the calculation of the surface tension for the liquid-
vapor interface of the Lennard-Jones fluid is presented. Aside
from testing the model for the DCF, the results from the
different approximate DFTs are compared and it is found that
they are all in reasonable agreement with one another and
with the results from simulation. The paper ends with a dis-
cussion of the results.

II. THEORY

A. Density functional theory formalism

Density functional theory is based on the fact that there
is a one-to-one correspondence between applied external
fields Vext�r� and the ensemble-averaged equilibrium density
profile ��r�. For a given external field, there is a functional of
the form

��n,Vext� = F�n� −� �n�r�dr +� Vext�r�n�r�dr , �2�

such that ��n ,Vext� is extremized by the equilibrium density
profile giving

0 = ����n,Vext�
�n�r�

�
n�r�=��r�

= ��F�n�
�n�r�

�
n�r�=��r�

− � + Vext�r� . �3�

Throughout this section, square brackets are used to denote a
functional dependence and round brackets to denote an ordi-
nary function. In general, the domain of the spatial integrals
is unbounded with the effect of any walls being explicitly
accounted for by the external field. The presence of a hard
wall will, in this way, manifest itself by the equilibrium den-
sity profile obtained from Eq. �3� giving zero density outside
the wall. However, for clarity, a volume V will be explicitly
indicated below with the understanding that it simply con-
notes the region of nonzero density. The functional F is con-
veniently written as a sum of an ideal gas contribution,
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�Fid�n� = �
V

�n�r�log��3n�r�� − n�r��dr , �4�

where � is the thermal wavelength and a remaining, excess
contribution Fex�n�. In general, the latter is unknown, but
since it depends only on the density, and not explicitly on the
field, it can be expressed by expansion about a uniform state
having constant density �̄0 as

1

V
�Fex�n� =

1

V
�Fex��̄0� + ��ex��̄0��n̄ − �̄0�

−
1

V
�
j=2

�
1

j!
�

V

¯ �
V

�n�r1� − �̄0� ¯ �n�r j� − �̄0�

�cj�r1, . . . ,r j; �̄0�dr1 ¯ dr j , �5�

where �ex��̄0�= �� /��̄0� 1
VFex��̄0� and cj�r1 , . . . ,r j ; �̄0� is the

j-body direct correlation function of a uniform fluid. These
are simply the functional derivatives of the Fex�n� in the
uniform limit,

cj�r1, . . . ,r j; �̄0�

= lim
n�r�→�̄0

cj�r1, . . . ,r j;�n��

= − lim
n�r�→�̄0

� j�Fex�n,Vext�
�n�r1� ¯ �n�r j�

, �6�

and it can be shown that they correspond to the usual direct
correlation functions discussed in liquid state theory.3 Thus,
the free energy functional of an arbitrary nonuniform system
is expressed in terms of the properties of a uniform fluid.
This series can be resummed to give

�Fex�n� = �Fex��̄0� + V��ex��̄0��n̄ − �̄0�

− �
V

dr1�
V

dr2�
0

1

d	�
0

	

d	��n�r1� − �̄0�

��n�r2� − �̄0�c2�r1,r2;�n	��� , �7�

where n	�r�= �̄0+	�n�r�− �̄0� the integral depends on the
two-body direct correlation function for an arbitrary density
profile. In particular, in the case of a uniform density, n�r�
= n̄ the last term on the right gives the standard result for
homogeneous fluids,

1

V
�Fex�n̄� =

1

V
�Fex��̄0� + ��ex��̄0��n̄ − �̄0�

− �
V
�

0

1

�n̄ − �̄0�2c2�r12; �̄0 + 	�n̄ − �̄0��

��1 − 	�d	dr12, �8�

which relates the DCF of the homogeneous system to the
thermodynamics. �Note that in writing this equation, the fact
that the DCF of a simple fluid depends only on the scalar
r12= �r1−r2� has been explicitly indicated.� An important
point in all of these exact expressions is that the results for
the free energy of the system with density n�r� �or the liquid
with density n̄� are independent of the choice of reference
liquid density �̄0. This is of course not true when approxima-

tions are introduced but any approximation will involve im-
plicitly or explicitly a choice of reference density. In this
section, the reference state has been explicitly indicated so as
to make this clear.

While the n-body DCFs for a uniform system are in
principle accessible, in practice only quantities up to the two-
body direct correlation function are known with any confi-
dence for arbitrary pair potentials using liquid state theory
such as the integral equations of Rogers and Young24 and of
Zerah and Hansen25 Even then, the integral equations only
possess solutions for certain ranges of density and tempera-
ture. Furthermore, if the goal is to develop a theory which
can eventually be applied to more complex systems involv-
ing asymmetric interactions or the solid phase, then this ap-
proach is infeasible.

B. Approximations to the exact theory

In order to construct a more practical approach, it is first
noted that the only system for which good general approxi-
mations to the functional Fex�n� exist is that of hard spheres.
It is therefore useful to consider the difference,

�Fex�n� = �Fex
HS�n� + �
Fex��̄0;d� + V�
�ex��̄0;d��n̄ − �̄0�

− �
j=2

�
1

j!
�

V

¯ �
V

�n�r1� − �̄0� ¯ �n�r j� − �̄0�

�
cj�r1, . . . ,r j; �̄0�dr1, . . . ,dr j

= �Fex
HS�n� + �
Fex��̄0;d� + V�
�ex��̄0;d��n̄ − �̄0�

− �
V

dr1�
V

dr2�
0

1

d	�
0

	

d	��n�r1� − �̄0�

��n�r2� − �̄0�
c2�r1,r2;�n	��� , �9�

where 
cj�r1 , . . . ,r j ; �̄0�=cj�r1 , . . . ,r j ; �̄0�−cj
HS�r1 , . . . ,r j ;

�̄0 ;d�, etc. Then, the simplest nontrivial approximation is to
truncate the infinite series after the first term giving the
theory studied by Rosenfeld,26

�Fex�n� 	 �Fex
HS�n� + �
Fex��̄0;d� + V�
�ex��̄0;d��n̄ − �̄0�

− 1
2�

V
�

V

�n�r1� − �̄0��n�r2� − �̄0�

�
c2�r12; �̄0�dr1dr2. �10�

However, while this is suitable for some applications, it suf-
fers from the fact that the results depend on the choice of
reference density �̄0. In fact, in the uniform limit, it will not
give the correct free energy for the bulk fluid unless one
demands that �̄0= n̄. This also works for some inhomoge-
neous systems such as a fluid in contact with a wall since
there is a unique bulk limit far from the wall.12 However, in
other problems, most notably that of the planar liquid-vapor
interface, there is no unique bulk limit and no choice of
reference density gives the correct bulk free energy in all
bulk regions.13

Perhaps the most natural approximation that is exact in
the limit of a homogeneous liquid is to replace the exact
DCF for the inhomogeneous system by the DCF of a homo-
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geneous system evaluated at some position-dependent den-
sity. There is considerable ambiguity on how to do this since
the DCF is a two-point function and the density is a one-
point function. The only formal requirements are that the
DCF must be symmetric in its arguments and it must reduce
to the known result in the uniform limit. Perhaps the two
simplest approximations satisfying both requirements are


c2�r1,r2;�n�� 	 
c2
r12;
n�r1� + n�r2�

2
� �11�

and


c2�r1,r2;�n�� 	 1
2 �
c2�r12;n�r1�� + 
c2�r12;n�r2��� .

�12�

In the following, these will be referred to as the local DCF
approximations �LDCF-I and LDCF-II, respectively�.

When the LDCF-I approximation is substituted into Eq.
�9�, one obtains after some rearrangement,

�Fex�n� = �Fex
HS�n� +� dr�
f�n�r�� +

1

4
�

V

dr1�
V

dr2�n�r1� − n�r2��2
c�2
r12;
n�r1� + n�r2�

2
, �̄0�

−
1

2
�

V

dr1�
V

dr2�
n�r1� + n�r2�
2

− �̄0�2


c�2
r12;
n�r1� + n�r2�

2
, �̄0�

− �n�r1� − �̄0�2
c�2�r12;n�r1�, �̄0�

 , �13�

where 
f�n�= 1
V�Fex�n�− 1

V�Fex
HS�n� is the difference in free

energy per unit volume of the homogeneous liquid at density
n and the density of a homogeneous hard-sphere liquid at the
same density and where


c�2�r;n, �̄0� � 2�
0

1 �
0

	


c2�r; �̄0 + 	��n − �̄0��d	�d	 .

�14�

The LDCF-II gives a somewhat simpler expression,

�Fex�n� = �Fex
HS�n� +� dr
f�n�r�� + 1

2�
V
�

V

�n�r1� − �̄0�

��n�r1� − n�r2��
c�2�r12;n�r1�, �̄0�dr2dr1. �15�

This has the intuitively appealing form of the sum of a hard-
sphere contribution, a local free energy approximation, and a
nonlocal term that explicitly depends, via the factor �n�r1�
−n�r2��, on the inhomogeneity of the fluid. To make contact
with earlier work and anticipating the model for the DCF
discussed below, assume that the DCF can be written as the

sum of a short-ranged part, 
c� 2
core�r12;n�r1� , �̄0�, and a

density-independent tail, . Then, the excess free energy can
be written as

�Fex�n� = �Fex
HS�n� +� dr
f�n�r�� + 1

4�
V
�

V

�n�r1� − n�r2��2
c2
tail�r12�dr2dr1 + 1

2�
V
�

V

�n�r1� − �̄0��n�r1�

− n�r2��
c� 2
core�r12;n�r1�, �̄0�dr2dr1. �16�

Since the core contribution is assumed to be short ranged, it makes sense to expand in terms of the difference �n�r1�
−n�r2�� giving, see Appendix A for details,

�Fex�n� = �Fex
HS�n� +� dr
f�n�r�� +

1

4
�

V
�

V

�n�r1� − n�r2��2�2�
0

1

	
c2
r12; �̄0 + 	
n�r1� + n�r2�
2

− �̄0��d	�dr1dr2

+ . . . , �17�

054701-4 James F. Lutsko J. Chem. Phys. 127, 054701 �2007�

Downloaded 25 Sep 2007 to 164.15.125.22. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



where the neglected terms are integrals involving �n�r1�
−n�r2��n for n�2. Expanding 
c2 about 	=1 gives to lead-
ing order

�Fex�n� = �Fex
HS�n� +� dr
f�n�r�� +

1

4
�

V
�

V

�n�r1� − n�r2��2

�
c2
r12;
n�r1� + n�r2�

2
�dr1dr2 + . . . , �18�

which resembles the well-known theory of Ebner et al.7,8 �In
the original work, the hard-sphere contribution was not
treated separately. However, because the approximation
scheme used here for the excess part is the same, this will be
referred to as the ESS theory after the authors of the first
paper.� If instead one expands 
c2 about 	=0 and keeps only
the leading term, the result is

�Fex�n� = �Fex
HS�n� +� dr�
f�n�r�� + 1

4�
V
�

V

�n�r1�

− n�r2��2
c2�r12; �̄0�dr1dr2 + . . . , �19�

which is the recent theory of Tang.13

Finally, having outlined the approximations that will be
used in the applications below, it is worth noting some for-
mal differences between them. The LDCF approximations
involve a minimal conceptual element, Eqs. �11� and �12�,
but as anticipated above and as shown explicitly below, the
resulting free energy is no longer independent of the chosen
reference state. For the liquid-vapor interface, it will turn out
that the dependence on �̄0 is quite weak except that if it is
chosen too large, no stable profile is found. For at least this
application, these theories are practically, if not formally,
unique. The same is true of the Tang theory although the
dependence on the reference state is found to be somewhat
stronger than for the LDCF theories. The ESS theory is in-
dependent of the reference state. However, hidden in its deri-
vation is an expansion of the density integrals in Eq. �17�
about an arbitrarily chosen point �	=1�. Perhaps it could be
argued that the expansion about 	=1 is justified by the fact
that it makes the theory independent of the reference state,
but whether or not this is convincing seems to be a matter of
taste.

C. Square-gradient approximation

Another approach to the description of inhomogeneous
systems is the square-gradient approximation.1,2,4,5 If the
density varies sufficiently slowly, it is possible to expand the
density dependence of the exact free energy functional so as
to obtain

�Fex�n� = �
V

��f�n�r�� + 1
2g�n�r����n�r��2 + . . . �dr ,

�20�

where the neglected terms involve higher order derivatives.
The coefficient of the gradient term is

g�n� = 1
6�

V

r2c2�r;n�dr �21�

showing that the square-gradient approximation is another
way to use information about the uniform system to con-
struct a description of nonuniform systems. The density pro-
file is determined by the Euler-Lagrange equation,

� · �g�n�r�� � n�r�� −
�g�n�r��

�n�r�
1

2
��n�r��2

−
�

�n�r�
��f�n�r�� − �n�r�� = 0. �22�

In the original theory of van der Waals, the dependence of g
on the density was neglected and the resulting constant value
of g is known as the influence parameter.

III. THE EXTENDED MEAN-FIELD MODE
FOR THE DCF

A. Formulation of the model

In order to apply any of the approximate DFTs discussed
above, it is necessary to know the DCF. The only general
approach to determine DCF’s up to liquid densities is via
integral equation theory. However, this can be computation-
ally expensive for complex systems and also suffers from the
fact that solutions often do not exist for some combinations
of density and temperature. For a homogeneous system, this
is not a problem if the DFT being used involves only the
local density �as in the approximations of ESS and of Tang�.
But for application to liquid-vapor interfaces, the whole
range of densities from liquid to vapor, necessarily including
densities in the two-phase region. As discussed in the Intro-
duction, the ad hoc nature of the solutions to this problem
suggests that the DCF need not be so precisely determined
for the purposes of DFT. Thus, the goal here is to put to-
gether as simple a model as possible that preserves certain
basic exact properties of the DCF. The basic structure of the
models considered is

c�r;n� = cHS�r;n,d� + ��d − r�
a0�n,T� + a1�n,T�
r

d
�

+ ctail�r;n,d� , �23�

where the first term is the DCF for a hard-sphere system with
hard-sphere diameter d, the second term is a correction to the
hard-sphere part in the core region, and the third part is the
“tail” of the distribution. The hard-sphere DCF will be cho-
sen to be consistent with the hard-sphere theory used in the
DFT. For simple fluids, this will mean either the Percus-
Yevick DCF or the one associated with the “White-Bear”
fundamental measure theory.20 Both of these are only non-
zero for r
d and in the core region they are cubic polyno-
mials in r. The core correction is shown as a linear polyno-
mial, although there is no reason that some other form could
not be used. The coefficients will be determined by demand-
ing that the DCF agrees with a known equation of state, via
Eq. �8� and by the requirement that the DCF be continuous,
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as it is expected to be for any continuous potential. This
gives

4�d3
1

3
a0�n,T� +

1

4
a1�n,T��

=
�2fex

HS�n�
�n2 −

�2fex�n�
�n2 − 4��

0

�

ctail�r;n,d�r2dr �24�

and

cHS�d−,n,d� + a0�n,T� + a1�n,T� + ctail�d−;n,d�

= ctail�d+;n,d� ,

where d± refers to the limit r→d from above or below. Note
that the core correction could include higher order terms with
continuity of the first and higher order derivatives being used
to determine the coefficients, but only the minimal model
involving the linear correction will be studied here. It seems
natural to refer to this combination of hard core+core
correction+tail as an “extended mean-field model.” While
any reasonable value for the hard-sphere diameter could be
used, the calculations presented below are based on the
Barker-Henderson formula,27,28

d = �
0

r0

�1 − exp�− �v�r���dr , �25�

where r0 is the point at which the potential equals zero.
In order to fix the form of the tail function, there is one

useful piece of information that can be considered: namely,
that at zero density, the DCF is known to be equal to the
negative of the Mayer function,

c�r; n̄ = 0� = exp�− �v�r�� − 1. �26�

This suggests that the low-density model in which the tail
function is simply the difference between the Mayer function
for the interaction potential and that for hard spheres, giving

ctail�r;n,d� = exp�− �v�r�� − 1 + ��d − r� . �27�

In this case, if the equation of state has the property that it
gives the exact second virial coefficient in the low-density
limit, then the model DCF will reduce to the exact result in
that limit. Unfortunately, while some versions of thermody-
namic perturbation theory do possess this property �e.g., that
of Paricaud29�, some of the most well-known theories, such
as those of Barker-Henderson �BH� �Refs. 27 and 28� and
that of Weeks-Chandler-Andersen �WCA�,28,30–32 do not and
so the low-density model will not, in this case, give the cor-
rect behavior.

FIG. 1. The coexistence curve for the Lennard-Jones fluid as calculated
using both the WCA perturbation theory and the BH theory. The full lines
are the liquid-vapor coexistence curves, the dashed-lines are the spinodals,
and the symbols are the simulation data from Ref. 39 �circles� and from Ref.
38 �squares�.

FIG. 2. The DCF at zero density and T*=1.5. The symbols are the negative
of the Meyer function �the exact result for zero density�, and the lines are
from the three choices of tail function described in the text. �a� Is based on
the exact equation of state, while in �b�, the Barker-Henderson perturbation
theory is used.

FIG. 3. The DCF at T*=1.5 and ��3=0.4 as determined from the model
using the Barker-Henderson perturbation theory, lines, and the simulation
data of Llano-Restrepo and Chapman �Ref. 23�.

FIG. 4. The DCF at T*=1.5 and ��3=0.6 as determined from the model
using the Barker-Henderson perturbation theory, lines, and the simulation
data of Llano-Restrepo and Chapman �Ref. 23�.
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If the exact low-density limit cannot be enforced because
of inadequacies in the equation of state, then it may be rea-
sonable to forgo the complexity of the Mayer function. In
thermodynamic perturbation theory, the potential is typically
written as a sum of a short ranged repulsion v0�r� and a long
ranged attraction w�r�, and it is assumed that the repulsive
part can be well approximated by the hard-sphere potential.
Applying this to the low-density tail gives

ctail�r;n,d� = exp�− �v0�r��exp�− �w�r�� − 1 + ��d − r�

	 ��r − d�exp�− �w�r�� − 1 + ��d − r�

	 − ��r − d��w�r� , �28�

where the last line is a good approximation at high tempera-
tures. In fact, in perturbation theory, it is often found that this
type of approximation is also accurate at high densities, re-
gardless of the temperature, so that this mean-field approxi-
mation is frequently more useful than these arguments would
suggest.33 In the following, this approximation will be used
with the simplest choice of the long-ranged part of the po-
tential, namely, w�r�=v�r�.

Finally, we discuss an interpolation between the low-
density model and the extended mean-field model. The
former is exact at low density, provided the equation of state
gives the correct second virial coefficient. However, at
higher densities, it is often better to assume the mean-field
tail as opposed to the Mayer function tail �this is in part the
rational behind the mean-spherical approximation�. The
same type of thing occurs in thermodynamic perturbation
theory where a “resummed” perturbation theory sometimes
used those interpolates between these two forms.29,34,35 The
equivalent idea here would be to represent the tail of the
DCF as

ctail�r;n,d� = exp�− �v0�r���1 + �HS
−1 ��̄�

��exp�− �HS��̄��w�r�� − 1�� − 1 + ��d − r� ,

�29�

where the potential has again been separated into a short-
ranged repulsion v0�r� and a long ranged attraction w�r� as in
perturbation theory �see, e.g., Ref. 28�. The function �HS��̄�
= ���̄ /��P�T is the reduced compressibility of a hard-sphere
system at density �̄. At �̄=0, the compressibility is one and
this is identical to the low-density approximation giving the
negative of the Mayer function. At high density, the com-
pressibility becomes very small and this becomes very simi-
lar to the mean-field tail. The use of the hard-sphere com-
pressibility to control the switching occurs naturally in
perturbation theory �see Refs. 29, 34, and 35� although here,
it is simply adopted as a convenient model. The model with
this form of the tail will be referred to as the hybrid model.
In the calculations discussed below, it is implemented using
the usual WCA separation of the potential.28,30–32

B. Comparison to simulation

In this section, the extended mean-field model for the
direct correlation function is illustrated by comparison to
data from molecular dynamics simulations for a Lennard-
Jones potential,

v�r� = 4�

�

r
�12

− 
�

r
�6� . �30�

The equation of state of the bulk fluid was calculated using
first-order thermodynamic perturbation theory using both the
BH and WCA theories, and the resulting phase diagrams are
shown in Fig. 1. The Barker-Henderson theory gives some-
what low liquid densities and higher vapor densities with a
lower critical point than does the WCA theory. Neither
theory is very accurate near the critical point where renor-
malization effects are expected to be important.

Figure 2 shows a comparison between the exact DCF at
zero density and a reduced temperature of T*�kBT /�=1.5
and that of the model. In Fig. 2�a�, the model is evaluated
using the exact second virial coefficient so that the low-
density and hybrid tails reproduce the exact result. The error
found in using the mean-field tail is due to compensation in
the core for the errors made outside the core in the integral of
the DCF. Note that the thermodynamic constraint depends on
the spatial integral of the DCF times r2, which explains the
relatively large deviations required inside the core. Figure
2�b� shows the models as evaluated using the Barker-
Henderson theory. Since the low-density free energy is incor-
rect in this theory, i.e., the second virial coefficient is wrong,
the low-density and hybrid models now include spurious
core corrections, whereas the core correction for the mean-
field tail is actually smaller. This is because the mean-field
tail is very close to that which is used in the Barker-
Henderson perturbation theory giving a case of compensat-
ing errors.

Figures 3–5 show the DCF for different densities for
T*=1.5, and Fig. 6 shows the DCF for T*=0.72 and ��3

=0.72. While this simple model cannot be expected to be
perfect, the figures show that it represents a good first ap-
proximation to the actual DCF. For the higher temperature,
the low-density tail appears slightly better at the lowest den-
sity. At the lower temperature, the difference is greater. This
is because the peak in the DFC is due to the minimum in the
potential and the low-density tail due to the exponentiation
of the potential gives a higher peak than both the mean-field
tail and the data. In order to give the same integral, the core

FIG. 5. The DCF at T*=1.5 and ��3=0.9 as determined from the model
using the Barker-Henderson perturbation theory, lines, and the simulation
data of Llano-Restrepo and Chapman �Ref. 23�. The hard-sphere contribu-
tion to the DCF is shown in black.
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correction is therefore forced to be more negative. Alto-
gether, it would appear that all of the tail approximations are
reasonable. The low-density tail is better at low densities, the
mean-field tail is better at high density, and the hybrid model
is overall the most accurate. Nevertheless, it would appear
that the additional analytic complexity of the low-density
and hybrid tails is only justified if the equation of state is
exact at low density and if there is particular interest in re-
producing the exact low-density DCF.

For the highest densities, see Figs. 5 and 6, the hard-
sphere contribution to the DCF is also shown so as to high-
light the role of the core correction. For T*=1.5, the core
correction gives a modest improvement over the hard-sphere
DCF over most of the core region. The errors are largest at
r=0 which is probably the least important region. On the
other hand, for T*=0.72, the core correction gives a clear
improvement over the hard-sphere DCF throughout the en-
tire core region.

IV. APPLICATION TO THE PLANAR INTERFACE

A. Reduction to a one-dimensional problem

In this section, the model DCF is used to evaluate the
density functional theories discussed in Sec. II for the case of
a planar liquid-vapor interface. The discussion here will fo-
cus on the extended mean-field approximation for the DCF
with the mean-field tail. Calculations with the more complex
models require more numerical analysis and confirm the con-
clusions of Sec. III that the additional complexity has little
effect on the quantitative results.

The density is assumed to vary in only one direction,
say, the z direction, and to be constant in all other directions.
For a fixed temperature below the critical point, there is a
unique value of the liquid and vapor densities, n̄l and n̄v,
such that the two phases have the same chemical potential
and pressure and can therefore coexist. Within the LDCF-II
model, the excess free energy per unit area, i.e., the surface
tension, can be written as

� �
1

A
���n� − ��n̄l��

= �Fex
HS�n� + �

−�

�

�
f�n�z�� − �n�z� − �f�nl� − �nl��dz

+
1

4
�

−�

� �
−�

�

�n�z1� − �̄0��n�z1�

− n�z2��c̃2
core�z12;n�z1�, �̄0�dz2dz1

+
1

4
�

−�

� �
−�

�

�n�z1� − n�z2��2�ṽ�z12�dz2dz1, �31�

where

ṽ�z� � �
−�

� �
−�

�

v�r���r − d�dxdy �32�

and

c̃2
core�z;n, �̄0� � �

−�

� �
−�

� 
a�0�n, �̄0� + a�1�n, �̄0�
r

d
�

���d − r�dxdy �33�

are the planar averages of the potential and the core correc-
tion to the DCF. The constants in the core term are related to
those in the extended mean-field model by

a� i�n, �̄0� = 2�
0

1

d	�
0

	

d	�ai��̄0 + 	��n − �̄0�� . �34�

Note that the equivalent of the model of ESS is obtained by
the substitution āi�n , �̄0�→ 1

2ai�n�, whereas that of Tang re-
sults from āi�n , �̄0�→ai��̄0� together with the specific choice
�̄0= 1

2 �n̄l+ n̄v�. The equilibrium density profile is found by
minimizing the free energy with respect to the density profile
subject to the boundary conditions,

lim
z→−�

n�z� = nl��,T� ,

lim
z→�

n�z� = nv��,T� , �35�

lim
z→±�

d

dz
n�z� = 0.

B. Implementation

The numerical work begins with the calculation of the
Barker-Henderson hard-sphere diameter d�T� from Eq. �25�.
The coefficients ai�n� are evaluated for 100 points in the
density range of 0�n�3�1 using either the BH or WCA
first order perturbation theories. They are then interpolated
using cubic splines which permit easy calculation of the co-
efficients a� i�n , �̄0� for a given value of �̄0. �In this regard, the
difference in computational complexity between the LDCF
theory and the approximations of ESS and Tang is minimal.�
The calculation of the free energy is discretized by introduc-
ing a lattice of points on the interval �−L ,L� via zi=−L+ i�
for i=0 to N=2L /�. The limits are chosen sufficiently large

FIG. 6. The DCF at T*=0.72 and ��3=0.85 as determined from the model
using the Barker-Henderson perturbation theory, lines, and the simulation
data of Llano-Restrepo and Chapman �Ref. 23�. The hard-sphere contribu-
tion to the DCF is shown in black.
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that it may be assumed that n�L�=nv and n�−L�=nl, and the
goal is to find the profile in the form of the points ni=n�zi�
which minimize the free energy functional. �Although care
must be taken to include the contributions of the regions
outside this range, which can be done analytically.� The min-
imimization of the free energy was performed using the
Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method,
as implemented in the GNU Scientific Library.36 Except
where otherwise noted, all results reported here are based on
a lattice of 20 points per hard-sphere diameter, �=d /20.

C. Results

Figure 7 shows the reduced surface tension �*=��2 /� as
a function of temperature obtained using the LDC-II with
both the BH and WCA first order perturbation theories for
the equations of state, as well as the simulation results of
Mecke et al.37 of Duque et al.,22 and of Potoff and
Panagiotopoulos.38 The surface tensions calculated are quite
sensitive to the densities of the coexisting phases so, as
might be guessed from the phase diagrams, the BH results
are more accurate at higher temperatures, near the critical
point, whereas at the lowest temperatures, the results using
both perturbation theories are comparable. Figure 8 shows
the density profiles obtained for T*=0.7 calculated using all
of the various DFTs discussed above. The square-gradient

approximation �SGA� gives a much broader profile than the
other DFTs. The LDCF and Tang models give smooth pro-
files while the ESS shows some small oscillations at the
transition to high density, but the profiles for all four models
are extremely similar. They all show a very rapid increase in
density moving from the vapor into the liquid, followed by a
slower, more rounded profile as the density approaches that
of the liquid.

Figure 9 shows a comparison of several different ver-
sions of the DFT including the LDCF-I, Eq. �11�, the LDCF-
II, Eq. �12�, and the approximate theories of ESS type, Tang,
and the SGA. With one exception, all of the DFTs except the
SGA give almost identical results. The SGA gives a consid-
erably higher surface tension, a fact well known in the
literature.21 The exception is that in the present calculations,
the ESS theory is unstable at T*=0.6 and no solution was
found.

The exact free energy is independent of the path in den-
sity space used to calculate it. This property is shared in the
ESS-type theory but the other approximate DFTs all contain
an explicit dependence on the reference density. Figure 10
shows the variation of the surface tension as a function of the
reference density for T*=0.7. Note that the LDCF approxi-
mations as well as that of Tang do not give stable solutions if
the reference density is chosen too large. Within the region

FIG. 7. The surface tension as a function of temperature. The symbols are
measurements from simulations �circles from Ref. 22, squares from Ref. 37,
and triangles from Ref. 38�. The lines are from the LDCF-II DFT evaluated
with the corrected mean-field DCF using the equation of state calculated
from the BH perturbation theory �full line� and the WCA theory �broken
line�.

FIG. 8. The density profiles calculated from the various DFTs for T*=0.7.

FIG. 9. A comparison of the surface tension as a function of reduced tem-
perature as calculated from the LDCF-II, ESS, Tang, and SGA DFTs.

FIG. 10. The variation of the reduced surface tension �* as a function of the
reference density �0�3 for the different DFTs using the BH equation of state
and for T*=0.7. The vertical lines are the boundary of the region for which
a stable solution was found.
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that solutions exist, the resulting free energies are, in fact,
only weakly sensitive to the value of the reference density,
with the Tang theory showing the largest variation. The
LDCF-I theory is the most robust in the sense of possessing
the widest range of possible values of reference density.

One interesting distinction between the theories is the
range of temperatures for which they give stable solutions.
The liquid-vapor interface only exists for temperatures below
the critical point �around T*=1.3 in simulation and the BH
theory�. As the temperature is lowered, the system eventually
reaches the triple point, at about T*=0.7, below which the
thermodynamically stable phases are the vapor and the solid.
However, the liquid can still exist as a metastable phase and
indeed, the usual perturbation theories continue to work for
temperatures much lower than the triple point. It is therefore
of interest to check the behavior of the DFTs for lower tem-
peratures where a metastable liquid-vapor interface is pos-
sible. In fact, both of the LDCF theories continue to give
sensible results for temperatures as low as T*=0.25, as does
the model of Tang. On the other hand, attempts to solve the
ESS theory below the triple point are problematic. Calcula-
tions performed at T*=0.6 with the ESS are stable but the
profile shows significant oscillations. However, when the
density of lattice points is doubled, it is no longer possible to
find a stable solution and this is true at lower temperatures,
even using the original lattice spacing. For comparison, halv-
ing the lattice spacing has no qualitative effect on the LDCF
calculations, even at the lowest temperature, and the surface
tension changes by less than 0.2%.

V. CONCLUSIONS

The extended mean-field model for the DCF, consisting
of a hard-core contribution, a mean-field tail, and a linear
core correction, has been shown to be a reasonable approxi-
mation to the DCF for a Lennard-Jones fluid. The model
retains much of the simplicity of the mean-field model but is
constructed to give a faithful representation of the thermody-
namics of the homogeneous system. The approach used here
differs somewhat from that commonly found in the literature

wherein the goal is to make an ab initio ansatz for DCF, or
more generally, for the DFT, which is subsequently tested by
comparing its prediction of the properties of the homoge-
neous system to simulation. Given that good, computation-
ally efficient means exist—and have long existed—for cal-
culating such properties, there is no real reason to try to
construct a DFT at this level. Instead, the philosophy used
here is to view DFT as a tool which is primarily useful for
studying more complex inhomogeneous systems and which,
as such, is legitimately constructed assuming a priori knowl-
edge of the homogeneous system.

In this paper, the model DCF was used in conjunction
with several approximate DFTs to study the liquid-vapor in-
terface of a Lennard-Jones fluid. It was found that aside from
the well-known exception of the SGA, all of the DFTs gave
very similar results for both the surface tension and the den-
sity profile. The calculated surface tensions were also found
to agree well with the results from simulations.

It was noted at several points that the different approxi-
mate DFTs were sometimes unstable in the sense that no
smooth density profile could be obtained. Fundamentally,
this is due to the fact that the hard-sphere part of the free
energy, described by fundamental measure theory, involves
smoothed densities, while the attractive part of the free en-
ergy involves the density evaluated at a point. The instabili-
ties arise because a very localized spike in the density can
increase the size of the attractive part of the free energy,
whereas, because of the smoothing, it has little effect on the
hard-sphere contribution. This defect of the LDCF theories
will be explored further in a future publication. Further ap-
plications of this work will be to the study of different po-
tential models and geometries, particularly the case of aniso-
tropic potentials.
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APPENDIX A: PROOF OF EQ. „17…

To prove Eq. �17�, the two-body term is written as

−
1

2
�

V
�

V

�n�r1� − �̄0��n�r2� − n�r1��
c�2�r12;n�r1�, �̄0�dr1dr2

=
1

4
�

V
�

V

�n�r2� − n�r1��2
c�2�r12;n�r1�, �̄0�dr1dr2 −
1

2
�

V
�

V

n�r1� + n�r2�

2
− �̄0��n�r2�

− n�r1��
c�2
r12;
n�r1� + n�r2�

2
+

n�r1� − n�r2�
2

, �̄0�dr1dr2. �A1�

Expanding in the difference in densities gives
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c�2
r12;
n�r1� + n�r2�

2
+

n�r1� − n�r2�
2

, �̄0� = �
0

1

dx�1 − x�
c2
r12; �̄0 + x
n�r1� + n�r2�
2

+
n�r1� − n�r2�

2
− �̄0��

= 
c�2
r12;
n�r1� + n�r2�

2
, �̄0� + 
n�r1� − n�r2�

2
�

��
0

1

dx�1 − x�x� �
c�2�r12;n�
�n

�
�̄0+x�n�r1�+n�r2�/2−�̄0�

+ O
n�r1� − n�r2�
2

�2

. �A2�

The second term is

�
0

1

dx�1 − x�x� �
c�2�r12;n�
�n

�
�̄0+x�n�r1�+n�r2�/2−�̄0�

= 
n�r1� + n�r2�
2

− �̄0�−1�
0

1

dx�1 − x�x
�

�x

c2
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0

1
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c2
r12; �̄0 + x
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2
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So
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The second term on the right is odd under an interchange of the indices and so vanishes. What is left gives
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The expression for the free energy is thus

�Fex�n� = �Fex
HS�n� +� dr
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1

4
�

V
�

V

�n�r1� − n�r2��2
c2
tail�r12�dr2dr1

+
1

4
�

V
�

V

�n�r1� − n�r2��2�2�
0

1

	
c2
core
r12; �̄0 + 	
n�r1� + n�r2�

2
− �̄0��d	�dr1dr2 + O
n�r1� − n�r2�

2
�3

�A6�

or
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