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Abstract

A great deal of experimental evidence suggests that a wide spectrum of phase transitions occur in a
multistage manner via the appearance and subsequent transformation of intermediate metastable
states. Such multistage mechanisms cannot be explained within the realm of the classical nucleation
framework. Hence, there is a strong need to develop new theoretical tools to explain the occurrence
and nature of these ubiquitous intermediate phases. Here we outline a unified and self-consistent
theoretical framework to describe both classical and nonclassical nucleation. Our framework provides
adetailed explanation of the whole multistage nucleation pathway showing in particular that the
pathway involves a single energy barrier and it passes through a dense phase, starting from a low-
density initial phase, before reaching the final stable state. Moreover, we demonstrate that the kinetics
of matter inside subcritical clusters favors the formation of nucleation clusters with an intermediate
density, i.e. nucleation precursors. Remarkably, these nucleation precursors are not associated with a
local minimum of the thermodynamic potential, as commonly assumed in previous phenomenolo-
gical approaches. On the contrary, we find that they emerge due to the competition between
thermodynamics and kinetics of cluster formation. Thus, the mechanism uncovered for the formation
of intermediate phases can be used to explain recently reported experimental findings in crystal-
lization: up to now such phases were assumed a consequence of some complex energy landscape with
multiple energy minima. Using fundamental concepts from kinetics and thermodynamics, we provide
asatisfactory explanation for the so-called nonclassical nucleation pathways observed in experiments.

1. Introduction

Phase transitions from less dense states to more dense ones are omnipresent in a wide spectrum of natural
phenomena around us [1, 2]. Examples can be found in cloud and polar cap formation [3-5], biomineralization
processes such as bone development [6—8], protein aggregation and colloidal crystallization in living cells [9-11],
and volcano and black hole formation [12, 13]. These transitions are characterized by an initial incubatory stage
governed by random density fluctuations that appear spontaneously in the mother phase (nucleation clusters).
The incubatory stage determines the transition time and is known as nucleation.

One of the most popular approaches to nucleation is the so-called classical nucleation theory (CNT) [1, 2]. It
relies on the Gibbsian concept of an energy barrier resulting from the competition between the volume and
surface energies of the nucleation cluster [ 14, 15], and one empirically postulates monomer attachment-
detachment rates, which are then used to describe the kinetics of cluster formation [16—21]. Moreover,
nucleation clusters are assumed to be spherical seeds of the final phase, which grow in size by attaching
monomers, as the transition ensues.

Over the years, CNT has been useful in explaining near-equilibrium transitions in simple fluids. However,
recent experimental evidence has revealed new phenomena that seem to be irreconcilable with its basic ideas
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[22-39], ranging from multistage nucleation pathways[22, 30, 32, 36, 37, 39], to nucleation precursors
[23,29,31, 33, 34, 39] and pre-nucleation clusters [24, 27]. These experimental findings and associated
phenomena are widely referred to as nonclassical nucleation. It is ubiquitous in a large spectrum of phase
transitions, but progress to its understanding is hampered by the lack of a theoretical framework going beyond
CNT. Of course CNT has been quite successful at equilibrium or close to it, but its use far from equilibrium is
problematic relying on ad hoc and phenomenological hypotheses. For example, driven by the convenience and
simplicity of CNT, there have been attempts to identify precursors and intermediate states in experiments by
postulating an energy landscape with multiple local minima (metastable states) between the initial and the final
stable state. However, unlike what is suggested by such postulated energy landscapes with multiple minima, it
has been recently shown that nonclassical multistage nucleation does not necessarily mean multiple nucleation
events [40—42]. This underlines the need for caution when trying to understand nonclassical nucleation through
CNT-tinted glasses, and naturally raises the following question. Is it possible to come up with a solid theoretical
justification for the nonclassical features of nucleation? To address this question we must change our viewpoint
of nucleation clusters. Instead of treating them as discrete and independent objects, we need to think of them as
spontaneous local density variations of the mother phase. In this case, the cluster evolution is given by the
conservation laws of fluid dynamics augmented to account for spontaneous thermal fluctuations [43]. Within
this framework, commonly known as fluctuating hydrodynamics (FH), the system is described by its time-
dependent hydrodynamic fields. In the prototypical case of an isothermal system with strong dissipation due to
the thermal bath, the only relevant quantity is the density field [44]. In principle, the equations of FH provide us
with a full and self-contained description of the system’s dynamics, including rare events, such as nucleation.
Therefore, describing the evolution of a single density fluctuation using FH would provide an alternative theory
of nucleation. A decisive first step in this direction was the recent mesoscopic nucleation theory (MeNT) put
forward in [45—48]. In MeNT the number of parameters (so-called order parameters) we may choose to
effectively describe a nucleation cluster is free.

As numerous experimental findings on nonclassical nucleation cannot be satisfactorily explained by one-
parameter clusters, the development of new models by considering multi-parameter clusters may seem to be an
appealing (if not the only) way to advance our understanding of nucleation. It would seem that finer effects
associated with nucleation may ultimately be explained by ascribing additional degrees of freedom to nucleation
clusters, e.g. the crystallinity, which measures local order inside the cluster. However, the rising complexity of
such multi-parameter models means that exact expressions for observables, such as nucleation rate and cluster
distribution, do not necessarily exist, even for the vanilla two-parameter model accounting for changes in the
size and inner density of the cluster (the first necessary step towards anonCNT). Under the MeNT picture, such
observable quantities are approximated by utilizing the concepts of mean first-passage time (MFPT) and the
equilibrium distribution derived from the corresponding Fokker—Planck equation, respectively [45-48].
Nevertheless, beyond the simplest one-parameter model, these approximations also rise in complexity, which
might be an important factor that has hindered the applicability of MeNT so far. The fundamental question then
is whether or not it is possible to formulate a fundamental and flexible theory of nucleation capable of capturing
nonclassical aspects, but with the simplicity and ease of access of the classical picture.

This is precisely the aim of the present study. Using elements from differential geometry and stochastic
calculus we show that any multi-parameter model can be reduced to an analytically tractable one-parameter
model by following the nucleation pathway, i.e. the most-likely path (MLP) of the system. Since, in principle, the
nucleation pathway of a given system may be obtained from simulations or even direct measurements, e.g.
atomic force microscopy [49], our results provide a valuable practical tool to explain and quantify nucleation
experiments. The theoretical effort to reduce the FH picture to a general one-parameter description is
worthwhile as it leads to the derivation of simple analytic expressions for the nucleation rate and cluster
distribution function, given the nucleation pathway. These expressions should be accessible to nucleation
practitioners as they allow the estimation of quantities such as nucleation rate and cluster distribution without
the need for the equilibrium approximation. And should provide practitioners with a self-contained and self-
consistent theoretical framework, which can potentially explain and quantify any nonclassical aspects of
nucleation. To showcase the predictive power of the methodology developed in this work, we apply it to the two-
parameter model mentioned before (accounting for changes in the size and inner density of the cluster), to
reduce it to a general one-parameter description, and demonstrate that the cluster distribution function
obtained corroborates the existence of intermediate nucleation states, which can be linked to the highly debated
nucleation precursors [23, 29, 31, 33, 34, 37, 39, 50]. Surprisingly, we observe that these nucleation precursors
are not associated with energy minima in the traditional sense, but are rather temporarily stabilized by the small-
scale kinetics of matter inside the nucleation cluster. More importantly, our work provides a formal and
alternative answer to the question of the role played by kinetics in nucleation, and whether the observation of
nucleation precursors should be understood as a unique consequence of a complex energy landscape. Finally, it
is worth mentioning that the formal framework presented here is not limited to the study of nucleation
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precursors, which is only one of many possible features of nonclassical nucleation. Applied to more general
models for nucleation clusters (including new order parameters, e.g. crystallinity), it will provide estimations of
the observable quantities mentioned above, i.e. the nucleation rate and cluster distribution.

2. Formulation

Our starting point is the FH description of nonequilibrium systems (which in turn can be obtained from the full
microscopic description i.e. Hamilton’s equations, figure A1), with an additional assumption of the FH
dynamics being overdamped. Nucleation is then fully described by the evolution of the one-body density p(r, )
of the system, which is reasonable for most cases of practical interest. We note that in the thermodynamic
description of uniform equilibrium systems, p(r, t) = p is equivalent to the average number density. The
overdamped limit of the system dynamics essentially means that the evolution is driven by the thermodynamic
force VOF [p]/6p(x, t), where F[p] is an appropriate generalized thermodynamic potential, such as the free-
energy, which allows us to define the energy barrier 2[p] = F[p] — uN in the grand canonical ensemble [51].
Here prand N are the chemical potential and the total number of particles, respectively. The equilibrium states
are computed by minimization of €2 which is the state-of-the-art in classical density functional theory (e.g.
[52, 53]). Within the FH approach, the nucleation clusters are associated with the spatially localized fluctuations
of density that are brought about by thermal noise.

To connect the theory with experimental observations, the density fluctuation (nucleation cluster) must be
described in terms of measurable properties, such as cluster radius, inner density, crystallinity, etc. Formally, this
is achieved by introducing a parameterization in terms of these properties:

p(r; t) = p(rs X(t), ..., xN (1)), 1)
where x = (x, ..., xV) are the order parameters shaping the energy barrier Q[p] = Q(x). The cluster
cumulative mass m (r; x(t)), given by

mis x@) = [ drp('s x(o), @
r'<r

is then inserted into the FH equation, yielding the N stochastic differential equations which describe the noisy
dynamics of the order parameters (see figure A1). The statistics across various realizations of noise is summarized
by the MLP, which represents the nucleation pathway. The key now is to obtain the nucleation path,

I' = (&(s), ..., N (s)) representing a trajectory in the parameter space, where sis the natural (arc-length)

parameter of such a curve. The critical cluster is hence characterized by the values of the order parameters
fulfilling:

(M) - (7559(5)) ) ©)
0x(s) 0Os s=I"1(x) ’

with 6 = 1/kgT being the inverse thermal energy at a given temperature T.

2.1. Natural dynamics

In many practical situations, the nucleation pathway may be accessible from, e.g., simulations, microscopic
mean-field theories or even experiments measuring the evolution of the nucleation clusters. As there is very little
chance that experimental observation will capture unlikely pathways, the nucleation trajectory observed must lie
in the close vicinity of the MLP (figure 1). In this case, the N order parameters will follow the nucleation pathway
trajectory in the average sense, and can be expressed in terms of the arc-length s. The latter, thus, becomes the
only relevant order parameter for nucleation, which locates the cluster properties along the nucleation pathway.
The arc-length dynamics is governed by the equation (see appendix A):

ds ., 080¢) D _,, _0g(s) -
— = —Dg ()"0 — Zg72(s) === + /Dg7(s) £(p), 4
ar g (s) D5 58 ()85 VDg(s) £(1) 4)
with D the diffusion constant and gﬁl(s) the kinetic (or Onsager) coefficient of the evolution of the order
parameter s, given by
00 1 dm(r; s) )2
= d , 5
g6 j(; ' 4r?p(r; s)( ds ®)

which recovers the usual expression for the monomer attachment rate for diffusion-limited nucleation (e.g.
equation (10.18) of [1]) in the simplest case of one-parameter model for clusters [46].

Thus, the first term on the right-hand side of equation (4) represents the effective drift that clusters
experience along the nucleation pathway, i.e. along the s-axis (see figure 1), with —93€2(s) /Js playing the role of
the thermodynamic driving force. The last term depends on the fluctuating force &(#), which has zero mean and
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Figure 1. Sketch of nonclassical nucleation. The initial cluster is denoted by an open circle. (a) Nucleation pathway I'(s), parameterized
by its arc-length s, corresponds to the MLP followed by two order parameters, x;(s) and x,(s). An initial density fluctuation ats = 0
evolves along I'(s) in the average sense. The shading around the pathway represents the fact that a particular realization of nucleation
may deviate from the MLP. Red circle ats = s, denotes the critical cluster. Black circle ats = s, demarcates the boundary between
nucleation and growth regimes. (b) Energy barrier AQ)(s) (green curve) and cluster distribution Py(s) (blue curve) along the nucleation
pathway. The dashed black curve represents a simplified treatment, which uses the cluster distribution in an undersaturated solution.

is delta-correlated in time. The second term has its origin in the noise, arising from the Ito—Stratonovich
inequivalence [46]. Due to its origin, it is also known as the spurious drift and vanishes in the weak-noise limit
(WNL), i.e. while the effective drift dominates the dynamics.

2.2.Nucleation cluster distributions

The stochastic dynamics along the nucleation pathway given by equation (4) yields a time-dependent cluster
distribution, which measures the probability of observing a nucleation cluster with properties around a given s,
atagiven time t. Due to the rare-event nature of nucleation, the cluster distribution relaxes (almost)
instantaneously to a steady-state distribution Py(s). During the nucleation stage, the probability of finding a
cluster out of the metastable basin must be close to zero. Hence, we assume that Py, vanishes at a certain point
beyond the critical cluster, s, > s.. This point demarcates the boundary of the nucleation regime, so that beyond
such configuration s, the nucleation cluster will deterministically grow without abound. Therefore, the
probability of observing a nucleation cluster around position s on the MLP is given by (see appendix B)

Bs) = AR e [ a5 o) e, ©

where A is the normalization constantand s, = (1 + ¢)s, the (empirical) boundary between the nucleation
and growth stages on the MLP, where 0 < e < 1. For an undersaturated equilibrium solution, there is only one
energy minimum, and no barrier crossing, so the distribution takes the simple form

Pq(s) = Aexp { —06Q(s) + %log(g(s))}. 7)

To make analytical progress, and obtain estimates of observable quantities such as the nucleation rate, CNT uses
akind of detailed-balance relation to get the monomer-detachment rate from the monomer attachment
frequency by utilizing the equilibrium distribution [ 1], even though this can really only be true at equilibrium.
Equation (6), however, provides an exact nonequilibrium cluster distribution for supersaturated solutions
independently of the number of order parameters. This is precisely why equation (6) is central to the present
study. For low and moderate supersaturated solutions’, the flux of nucleating clusters is almost negligible, which
makes nucleation a rare-event. Understanding the exponent in equation (7) as an effective energy barrier,
OQei(s), the cluster distribution recovers the classical Gibbs—Boltzmann structure, assumed heuristically in
phenomenological descriptions. However, {2.¢is not an equilibrium thermodynamic potential buta
generalization that incorporates the small-scale kinetics of cluster formation, unlike CNT or other heuristic
approaches. Such an abstraction allows us to explore the likelihood of appearance of nucleation clusters with
given properties via the analysis of the effective energy barrier (see figure 1).

* We refer to high supersaturation when the energy barrier involved gives e 2% > ((10~2). For moderate supersaturation,
0O(107%) < e 7% < (O(107?). Finally, low supersaturation is used when e %% < O(1079).

4



10P Publishing

NewJ. Phys. 20 (2018) 083019 M A Durdn-Olivencia et al

2.3.Nucleation rate and time

We can use the formalism outlined so far to obtain an exact expression for the main quantity of interest in
nucleation experiments, the nucleation rate J. This quantity measures the mean production rate of super-critical
clusters (i.e., s > s.), which in turn determines the mean time required for the nucleation cluster to abandon the
metastable basin (i.e.,0 < s < s.). The nucleation rate is commonly characterized by the MFPT, the inverse of
which is assumed proportional to the nucleation rate. However, in general, there is no exact expression for the
MEFPT for more than one-parameter, but an approximation only valid in the WNL [47, 54—56]. The main
advantage of the most-likely approach adopted here is that the nucleation process is entirely described in terms
of only one-parameter, the arc-length. Generalizing the derivation of the nucleation rate for one-parameter
MeNT [46], we obtain the expression for the most-likely nucleation rate of an N-parameter model (see

appendix C):

= poo
2t,[I]

t,[I'] = j:c dsN(s)—“;()S)e*ﬁQ(S) fs+ ds’ /g(s’) 890, ©)

with p the average number density of the metastable mother phase (i.e., at an infinite distance from the center
of the nucleation cluster) and N(s) the total number of molecules in the cluster. Equation (9) naturally defines the
most-likely time for nucleation to occur. Hence, we refer to t,, as the nucleation time. The square brackets have
been added to remind us that the corresponding quantities depend on the curve describing the nucleation
pathway.

JIT]

, ®

3. Results

The simplest model of cluster that captures the essence of nonclassical nucleation is determined by two basic
properties of nucleation clusters: the radius and the density at the center. Essentially, a nucleation cluster is
divided into three parts: the surrounding mother phase with density p__, the inner core with density p, and
radius R, and the depletion zone which enforces mass conservation. This translates into a two-dimensional
parameterization of the cluster density, p(r; x(¢t)) = p(r; p, R).Inorder to compute the energy of cluster
formation, AQ = Q(p,, R) — Q(p,., 00), one requires a reliable approximation for the bulk fluid equation of
state (EOS). We use the Barker—Henderson perturbation theory with the reference system given by the
Carnahan-Starling EOS for the hard-sphere fluid [57, 58] and the perturbative part given by the ten Wolde—
Frenkel model (see appendix D), which is well-suited for the description of globular proteins [40]. The EOS
allows us to obtain the equilibrium bulk densities at coexistence for a given temperature (e.g [53, 58]), p(oco)
(vapor-like) and pf)c) (liquid-like). These values define the coexistence (saturation) curve of the fluid. The mean-
field expression for the grand free-energy allows us to obtain the surface tension of the planar interface, 7', as an
increment of the grand potential at coexistence. With this, we can eventually compute the work of cluster
formation (with T = 0.4, in reduced units), shown in figure 2. In the WNL, the nucleation pathway (i.e., the
MLP) can be computed by setting the cluster at the critical configuration x, = (g, R.) (i.e., the saddle point of
the energy barrier), perturbing slightly along the unstable direction and integrating the deterministic parts of the
governing equations for R and pj (see figure A1). This yields the curve I, red solid line in figure 2 [47]. As can be
observed, the MLP does not follow the Cartesian gradient of the free-energy, i.e. e;0;() with e; being the local unit
vector pointing in the coordinate direction i € {p,, R}. Thisis because, in general coordinates, i.e. X, the
gradient is defined in terms of the metric tensor g’j, which in turn defines the length in the x-space [45, 47] (see
also appendix A). Indeed, the gradient operator can be written as e;g"0; (with g/ = gi;1 being the components
of the inverse of the tensor g;) using Einstein’s summation convention. The components of the metric tensor g;;
are defined in equation (A.7), which in the particular case of a two-parameter model translates into

equations (D.11)—(D.13). The free-energy barrier is discussed in appendix D. We note that po(I") and s, are
connected by a one-to-one relationship, as shown in figure 3. This means that the nucleation pathway can be
equivalently parameterized either by the arc-length or by the more physically meaningful order parameter, pj.
For this reason, we prefer to use py, since it provides a more physical information about the properties of the
nucleation cluster.

3.1.Energy barrier

Having determined the nucleation pathway, we can apply the theoretical framework discussed in section 2. A
first, and essential, result that emerges from it is the most-likely energy barrier, i.e. GAQ[I']. According to the
previous discussion, the energetic cost of producing a nucleation cluster is computed as a function of py, figures 4
and 5. For the two-parameter model, the energy barrier along the nucleation pathway reveals a highly




I0OP Publishing NewJ. Phys. 20 (2018) 083019 M A Durén-Olivencia et al

]

Figure 2. Work of cluster formation 3AS(po, R) at kg T = 0.4¢q, with p,, = 1.4 pg‘o). White dashed lines indicate the initial metastable
state density p. (bottom)and the final stable-liquid density (top), pg ~ 1.04 pg‘”. The origin of the p,-axis is set at the coexistence
vapor density pg ~ 15 x 1072073. The two minima of 3Q occur at densities p,, and pg. The red and green solid lines represent
the MLP, i.e. I', and the separatrix between the two basins of attraction, respectively. The red filled circle represents the critical
nucleation cluster, i.e. the saddle point of the energy surface, with p, = 0.84ng) and R, = 1.01 RSNT where R™NT = 3.980. The blue
filled circle shows the precursor state predicted by the constrained two-parameter model (see figure 8).

Figure 3. One-to-one correspondence between the cluster central density, po, and the arc-length, s, over the MLP. The uppermost
horizontal line corresponds to the value of the post-critical density, oi = (1 + ¢)p. (withe = 10~"). The red dashed line shows the
density of the critical cluster, equation (3). The lowermost horizontal line is the density of the initial metastable state, in this case

pr = 1.4 9.

nonclassical form. In figure 5(a), the horizontal axis seems to be naturally divided into three intervals according
to the energy and thermodynamic driving force involved. This determines the different kind of clusters present
in a nucleation process. First, the work of cluster formation varies rapidly as p, grows up to a certain value, after
which a plateau is reached. These low-density values represent small deviations from the background density
with associated large radii (see figure 2), and feel a relatively strong thermodynamic driving force (given by the
slope), leading to their disappearance. Between those low-density clusters and the near-critical clusters, with
densities in the vicinity of the maximum of SA(), we find a broad range of cluster densities with very similar
energies. Besides involving a low energetic cost, the clusters with these intermediate densities experience an
almost negligible thermodynamic driving force, which indicates that these ‘intermediate’ clusters are very likely
to appear and remain for long time periods within the initial metastable solution. Intuitively, we can expect these
intermediate clusters to be identified as nucleation precursors. This is indeed the case as we will confirm in the

6



10P Publishing

NewJ. Phys. 20 (2018) 083019 M A Duran-Olivencia et al

Figure 4. Normalized work of cluster formation, AQ2/ AQcnr(s.), and normalized kinetic contribution, log(g (s)) / log(g (s..)), along
the nucleation pathway. Green and blue lines represent the energy barriers predicted by CNT and the two-parameter model,
respectively, along their respective nucleation pathways. These are expanded independently along their respective natural order
parameter in figure 5. Brown and red curves are the kinetic contributions predicted by our framework and CNT, respectively. Such
contributions are included in the effective energy barrier, shown in figure 6.

0 | | | |
0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0.8 1

Po s[]

Figure 5. (a) Work of cluster formation along the nucleation pathway I'. The blue line was computed by using equation (D.9) alongI'.
(b) Work of cluster formation as function of the natural parameter s. The green line represents the CNT estimation along the classical
nucleation pathway. The global maxima correspond to the critical cluster, with properties R and p. given in figure 2.

following section, with the computation of the effective energy barrier and the nucleation cluster distribution.
Finally, beyond the critical density we find the post-critical clusters, subjected to a high thermodynamic driving
force pushing them to grow without a bound. While the results shown in figures 4 and 5 correspond to a
moderate supersaturation, with p,_ = 1.4 pgo), the same behavior is found for any supersaturation values.
Figures 4 and 5 depicta direct comparison between our predictions and CNT. We note that in the CNT
framework the nucleation pathway is just a straight line with p, = pf)c) and R varying from R = O up to
R =R, = (1 + ¢)R.(notshown in figure 4). Both predictions appear qualitatively similar when represented
as a function of the natural parameter, s, figure 5(b), in the sense that they both exhibit a local maximum
corresponding to the height of the nucleation barrier (which determines the nucleation critical cluster). But
there is a substantial difference between the two maxima of approximately 5 kzT. Such a discrepancy is related to
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Figure 6. Effective energy barrier along the nucleation pathway I'. The color code is the same as in figure 5. (a) Two minima within

po < pe The first, lower energetic one, corresponds to long-wavelength fluctuations. The second, intermediate one, represents an
intermediate density state purely induced by kinetics. This local minimum has an associated radius, R,,, = 0.45R.. (b) Effective energy
of cluster formation within the CNT framework.

the fact thatin CNT p, = pf)c), whereas the two-parameter model allows the inner density to freely vary. This has
a considerable effect on nucleation rate estimations, given the functional dependence of ] on the energy barrier,
equation (8).

3.2. Probability distribution: the effective energy barrier

One of the most important results is the existence of an exact nonequilibrium expression for the nucleation
cluster distribution, equation (6). This quantity is crucial when it comes to understanding the cluster population
and its properties, bypassing the standard but controversial equilibrium approximation. In fact, equation (6)
allows us to test the reliability of this approximation in equation (7) which was not possible before (it is expected
to be valid close to equilibrium, i.e. low supersaturation as noted earlier).

As discussed in section 2, the effective energy barrier shapes the nucleation cluster distribution in most
practical cases. Itis shown in figures 6 and 7, comparing the prediction from CNT [46] with that from the two-
parameter model equation (7). Within the CNT framework, figure 6(b), the kinetic term % log g (s) inducesa
local minimum far from the critical cluster, R,. This minimum corresponds to a maximum of likelihood. In the
near vicinity of the local minimum predicted by CNT, clusters also show a negative effective energy, whereas out
of this basin their energy approaches rapidly values higher than kg T. From a purely thermodynamic point of
view, one would argue that clusters become more unstable (and, hence, unlikely) as the radius grows, because the
free-energy cost involved grows monotonically as R, up to R.. However, the kinetics of the process shifts the
energy barrier in a way that stabilizes very small clusters (monomers), making them very likely despite involving
anonzero work of formation.

The more realistic two-parameter model reveals a completely different picture to the one depicted by CNT,
figure 6(a). First, only near-critical clusters have a positive effective energy, meaning that almost all precritical
clusterswith p < p, < p. have a non-negligible probability. The outcome is a much richer cluster distribution
that spreads all over the precritical states, not governed by monomers only, as is the case in CNT. This can be
seen as the result of the fact that the theory allows clusters to access a broader region of the phase space than CNT
does, which has only an isolated minimum. Second, the kinetic term does not affect all the intermediate clusters
the same way and induces a local minimum at an intermediate density p.,, such that o < p,, < p.. The
competition between thermodynamics and kinetics causes an intermediate state with a substantial probability
about p,,,, thus behaving as nucleation precursors. We recall that the local intermediate minimum, identified as
an intermediate precursor state, does not come from a minimum of the thermodynamic free-energy, €2, butasa
result of including the mass-transport kinetics inside the nucleation cluster. This demonstrates that apparent
multi-step energy barriers can be the result of the kinetics of cluster formation, while actually involving just a
single energy barrier.

The above analysis is corroborated by computing the steady-state PDF, figure 8. The usefulness of the
effective energy barrier now becomes clear, as the equilibrium PDF (dashed line) only differs from the steady-
state PDF (solid line) for post-critical clusters. Hence, one can infer the actual cluster distribution and its
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o R

Figure 7. Representation of the equilibrium cluster distribution, equation (7), along the classical (green curve) and nonclassical (blue
curve) pathways. For graphical convenience, the distributions are normalized to their maximum amplitudes. Such distributions are
independently represented as a function of the corresponding order parameter in figure 8. Surface plot at the bottom shows the

effective potential FAQ(x) — log,/detg(x), with x = (p,, R).
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Figure 8. Nucleation cluster distribution along the nonclassical (a) and classical (b) pathways. Solid lines represent the exact steady-
state solution, equation (6). Black dashed line goes for the equilibrium approximation, equation (7). Nonclassical cluster distribution
(a) shows a maximum at an intermediate density (nucleation precursor), in perfect agreement with the minimum reported for the
effective energy barrier in figure 6. Proof that several maxima in the cluster distribution do not necessarily imply several minima in the
thermodynamic potential.

properties as previously discussed. It is also evident that the main effect of the integral term in equation (6) is to
guarantee the boundary condition at py = p... Again, the CNT prediction was computed and shown, figure 8(b),
together with the results from the formalism introduced in section 2 to highlight the differences between both
theories.

3.3. Nucleation rates

We can now contrast the second most important quantity in nucleation, the nucleation times (or rates)

predicted by the different models we have discussed so far, using equation (9) and the CNT estimate given in

appendix D. The results (in reduced units) are shown in figure 9 as a function of both the supersaturation ratio
=Dy / pg, and the nucleation barrier, 5, respectively. It is noteworthy that the predictions obtained with
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(a) 1015

14 1.6 1.8 2 0 5 10 15 20
S BAQ,

Figure 9. Nondimensional nucleation times predicted by our framework (blue line) and CNT (green line), equations (9) and (D.5),
respectively. There is a systematic difference between CNT and our framework of approximately two orders of magnitude. This is
shown by the red dashed line, which represents the CN'T estimation multiplied by 10% (a) Nucleation time as a function of the
supersaturation ratio S. (b) Nucleation time as a function of the nucleation barrier, BAQ, = SAQ(s,).

equation (9) deviate from CNT by approximately two orders of magnitude in a systematic way (indeed, the
deviations of CNT predictions from experimental nucleation rates have been noted and widely debated over the
last few decades). This observation corroborates previous experimental works, e.g. [26, 38, 59—61], where
dramatic differences between CNT and experiments have been observed. For instance, in the case of proteins, it
has been shown experimentally that CNT tends to overestimate the nucleation rate by several orders of
magnitude (e.g. [26]), in agreement with our findings. Further, in the case of water, it has been reported that
CNT systematically overestimates nucleation rates with respect to experimental observations (in qualitative
agreement with our results) by approximately two orders of magnitude [61]. It is this qualitative agreement that
makes us believe that the framework outlined here offers a complete and rational understanding of nonclassical
nucleation, and in a way that clarifies the elementary dynamic characteristics of nonclassical nucleation.

4. Conclusions

We have introduced a general theoretical framework to describe nonclassical nucleation with simple and exact
analytical expressions. By taking the nucleation process to follow the most-likely route after the initial
metastable state, we obtain exact expressions for both the nucleation cluster distribution and the nucleation rate
and time. Our framework is capable of describing complex nonclassical features of nucleation but with
equations of the same level of simplicity as CNT. Analyzing the cluster distribution, we observe that the stability
of the nucleation clusters is governed by an effective energy barrier which includes the kinetics of matter inside
the nucleation cluster. Such an effective barrier could, in principle, have an arbitrary number of intermediate
local minima depending on the complexity of the kinetic coefficient but showing no intermediate states in the
thermodynamic potential. This highlights the importance of the cluster kinetics in describing the ubiquitous
multistage nucleation pathways and nucleation precursors, among other nonclassical features. Moreover,
although the theory is tested here with only one- and two-parameter models of nucleation clusters, it is generic,
hence not restricted to the specific conditions considered, and can be used in a wide spectrum of other settings,
e.g. crystallization by including a third order parameter such as the crystallinity (along with a more sophisticated
free-energy functional).

Applying our framework to a particular model of clusters characterized by the inner density and the size of
the cluster, we obtain deviations from the CNT predictions for the nucleation rate similar to previous works. But
we also go much further. In particular, unlike previous works we study the nonequilibrium distribution of
clusters. This is done with the help of the effective energy barrier defined in section 2. Our main conclusion is
that the predicted nucleation cluster distribution is much richer than the CNT prediction, due to the intrinsic
kinetics of the process, which is naturally incorporated to the energy barrier in a self-consistent manner. Indeed,
the system seems to follow the formation of intermediate density (precritical) clusters, i.e. nucleation precursors.
Even more, the kinetics of cluster formation favors the appearance of clusters with density very close to that of
the critical cluster. This mechanism of formation of nucleation precursors offers insights on the origin of
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seemingly stable precritical clusters that have been recently observed in experiments. Indeed, we find that the
appearance of nucleation precursors can be a direct result of a complex competition between kinetics and
thermodynamics, without having to involve complicated energy landscapes as commonly postulated.

Finally, interesting applications of the framework developed here would be to consider multiple-particle
species and confined geometries. These conditions seem to be the canonical experimental setting to observe
nonclassical nucleation (such as the widely known pre-nucleation clusters or the two-step nucleation
mechanism, which lack a formal theoretical explanation as of yet). Also, another interesting study would be the
application of our framework to scrutinise the effects of inter-particle hydrodynamic interactions on nucleation.
These interactions might have an impact on diffusivity, and hence, on particle dynamics, which has been shown
to be crucial to understanding certain features of nonclassical nucleation. We shall examine these and related
questions in future studies.
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Appendix A. Derivation of the arc-length dynamics

As mentioned at the beginning of section 2, our starting point is the overdamped FH equation for colloidal
systems (figure A1) [44]:

%anzv-&mmwvﬁiﬁ)+V-wmmnémﬂ (A1)

with &€ (r; ¢) beinga zero mean and delta-correlated fluctuating force, such that (£ (r; ¢)) = Oand
(E(r; DE; 1)) = 26(t — t')6(r — 1'). Integrating equation (A.1) over a spherical shell gives an evolution
equation for the cumulative mass m(r; t) of spherically symmetric density distributions p(r; t) [45]:

I t) oo 0 08Flpl | s
o D4nrép(r; t) o op(0) + D4nrep(r; t) £(r5 1), (A.2)

with m(r; £) defined as in equation (2), (r; ¥) having zero mean and ({ (r; £)£(r'; t')) = 26(r — r)6 (¢t — t').
Consider now the parameterization of the density profile of a fluctuation in terms of a collection of scalar
parameters x = (xj, ..., xy),so that p(r; t) = p(r; x(t)). Hence, m(r; t) = m(r; x(t)), so that:

Ims xWO) d%i g2y )0 9010 + \[Daxrip(rs t) £(r3 D). (A3)

Ox; dt or 6p(r)
The latter equation can be multiplied by a test function W;(r; x(¢)) and integrated over r, resulting into:
dx, 9 86F[p]

=D > dr Wi(r; x(t))4nr?p(r; t)—
dt j; ! ar 6p(r) o (rsx()

+ foc dr Wi(r; (1)) D4nr?p(r; t) £(r5 1), (A.4)
0

p(r;x(t))

g; (x(1))

with

om(r; x(t)

ox, (A.5)

&) = [ dr W x()

Equation (A.2) can be given the geometric interpretation of a gradient flow on the energy surface in mass space
with a metric of (Om(r; t) /9r)~L. This allows us to define the distance between two mass distributions as [45]:

s[mg, my] = \/j;oo du(m()*l(u) — mfl(u))Z_ (A.6)

It can be shown that the definition of g;; which minimizes the distance between the parameterized mass
distribution m (r; x(¢)) and the actual mass distribution m(r; ¢) is the one involving the following definition for
Wi(r; x(0)):

11



10P Publishing

NewJ. Phys. 20 (2018) 083019 M A Durdn-Olivencia et al
Colloidal fluid: (n + M) particles Hamilton’s equations
L OH L, OH < / dt x j> Nucleation Pathway Nucleation Experiments
(o my o (oMM ot YT o . >
i i) e ™ e on oy | r={3@s),i=1,...,N[0<s<s;}
o collowds fi=p bim =g
Pi dq; A +
(faxo)
Po= ko) ff dsians Analytical Predictions
v .
Langevin Equations Generalized Langevin Equations Py(x(s)) = A/g(s)e B(s) /(ls’ V/r(s/)(,,mb’)
(1) = m 'p(t) o,,;(r.rpf%V,-j(r 1), . 1
N s )
b= ~ D T | o Moo P(x(s)) ~Ae 7w 30q(s) = BQ(s) =5 logg(s)
Or; —j(r;t) =-V, L S —ry) —
ot o poc
Microscopic distributions =" J T
Mo 2t,,
prst) =3 o(r — oV (r . .
/f(r )= 0 —x) 72%5@4,)7 5 t) + e/mr ks Tp(r DE(x: ) L% L .
Jeit) =3 pid(r i) ! ta =55 [ dsN(s)Vgls)e™ ’“)/dm Vo(s)eP2
o s
/rlr”z/p”/” S pMit) x O
A4
Fluctuating Hydrodynamics
plr;t) . Li(r;t) < dt x[> -
a (_im)) Ve (j(r:/) © j(xst)/p(est) + p(rs )1 + TI(xst) / Natural-Parameter Dynamics
- 0 ds L9BQs) | 4D, dgls) -
( 2i(rst) + e /kpTmAp(r; 1) &(r: /)) i 7”"(”)71).5 teigy (‘*)T‘s +ey/Dg=1(s)E(t)

SF[p]
Vop(rit) = plr:t)V,
Pt = o)V ey
v (v/m) >1 (-

Dean-Kawasaki Equation

</4” X D> N — parameter Mesoscopic Nucleation Theory
kT 5[] (kT
Bip(rst) = Ve 2 p(rit) Ve~ +eyf p(rif)f(r:t)) Ao N 980 N
ym Sp(rit | Ym o i QL 2pgi VDl (x)€"
i) 7\ - ?:] D)t + DA + Y eV D € (1)

v=1

| t

plrit) = plr; (1), ... 2™ (1))

m(r;x(t) = / dr'p(r':x(t))

Figure Al. Flow diagram of the approach used to obtain the expressions presented in this work from the full underlying particle
dynamics. Arrows indicate the interconnectedness of the different equations. Thick boxes: main results of this work. Text on arrows

give brief descriptions of the approximations/manipulations made. Nomenclature: P projection operator, f,,. nonequilibrium
distribution, v/m >> 1 overdamped limit, and ( f dt x O) time integration and average over multiple realizations [44].

1 om(r; x(t))
4mr?p(r; x(1)) 0x;

Y 1 om(r; x(t)) Om(r; x(t))

&(x(®) = fo dr 47r?p(r; x(1)) Ox; Ox; '

W;(r; x(t)) =

>

(A7)

We can carry out the integration on the first term on the right-hand side of equation (A.4), which produces

> (7 2 0y 0 O0F[p] _ [, Om(rs x() O 60F[p]
fo dr W3 x(O)drp (s 050 8 o j; T 1]

p(r;x(t))

dr

—lim Om(r; x(t)) 68F[p] B f“ Op(r; x(t)) 60F[p]
r—00 0x; op(r) 0 0x; op(r)

_ONG() . 9BFX
B é)xj Bﬂ (%Cj ’

p(r;x(1)) p(r;x(t))

(A.8)

where we have used that lim,_, . m(r; x(t)) = N (x(t)), the total number of particles in the system, and that the
system is expected to have bulk properties at infinity, so that lim,_, .. (6F [p] /6p (r)),(s;x(ry) = - The second
term in equation (A.8) was obtained by using the functional chain rule, so that F (x) = F[p(x)]. Upon
substitution of equations (A.8) into (A.4) we obtain:

dy; 080 o0 D om(r;x) .,
T Dg; Ox; &ij (X)j; dr m ox, (s t), (A9)

where we have also made use of the definition of the (Landau’s) grand potential 2 = F — p N. Equation (A.9)
must be interpreted in the Stratonovich sense, since the equation is not [t6—Stratonovich equivalent and we have
used the usual chain rule for derivatives. In order to get a simpler form for the noise term, we first need to obtain
the Itd representation of equation (A.9) and then substitute the noise term with a simpler one with the same
autocorrelation. Utilizing the standard It6—Stratonovich transformation rule [62], we get the equivalent It6
form:
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dx; —_D ~10BQ(x)

ar S o

00 i _1 D om(r; x) _1 | D om(r; x)
+j; dr(axlgij (%) 47rr2p(r; X) Bx]- )(glk (x) 47TT2P(T§ X) Dxy ]
4 o0 D om(r; x) .,
8ij (X)j; dr \ 4rrp(r; x)  Ox; S5 ), (4.10)

where Einstein’s summation convention was used for simplicity. The noise term in equation (A.10) has
autocorrelation Dj; given as follows:

-1 f‘” 2D om(r; x) Om(r; x)

D;j(x) = g;'g; = 2Dg." (). (A.11)

.
4nrlp(r; x)  Oxp Ox

Thus, the noise term can be replaced by the simpler form D qi]._ lx)¢ ; (t) with 8 (x) = g, (%) Ty (x) and
(&) §j (1)) = 26;;6(t — t'). The second term in the right-hand side of equation (A.10) is the noise-induced (so-

called spurious) drift, with components 1" (x), under It0’s interpretation. For Ito-Stratonovich equivalent
equations, this term vanishes. After some manipulations, this term can be rewritten as follows:

-1
DD (x) = agij (x) n lg 10 (%)

+ <g1] '@ () — g (g )

Ox; 270 %k O
o foo dr 1 dp(r; x) Om(r; x) Om(r; x)‘ (A12)
4mrip*(r; x)  Ox; Ox; O
Thus, we arrive at the simplified version of equation (A.9) under It6’s interpretation:
dx; 1, 080 -
T g () b x(X) + 1P + VDa; ' ®&(0), (A.13)
i

which is again a gradient flow on the energy surface in x-space with g;l as metric. If we wanted to work under
Stratonovich calculus, we could use the same equation but with the following noise-induced drift:

B — 4™ _ p 718%’71 (A.14)

i i qk] (9.7(?]( . .
As mentioned before, the nucleation pathway is identified by the MLP, which is determined by the temporal

evolution of the order parameters x(7). This can be seen as a parameterized curve,
I' ={&(1), ..., xn(7)): T € [0, Tenal }, where 7 and 7,4 are the values of 7 related to the initial and final state,
respectively. That said, we can find a natural reparametrization of the curve by using the arc-length over the
curve:

T, () , (’)
5(7'):];0 dr\/ ) ’ , (A.15)

sothat, I'(s) = I'(7(s)), where 7(s) is the inverse of s(7). Under these conditions, the density profile can be re-
parameterized as

p(r; t) — pp(r; s) = p(r; s, xp(s)) (A.16)

which leads us to a single order parameter description of the dynamics. Applying the previous derivation to the
case of a single parameter, equation (A.13) is simplified substantially as g; i (%) becomes g(s), g;(x) becomes

/g (s),and the noise-induced drift is simply — %Dg*2 (s)0g(s) / 0s. Combining these results gives the desired
equation for s:

0
%Z 71()859(5) Dg,z(s)%Jr [Dg1(s) £b). (A.17)

Besides, the definition of g(s) given in equation (5), is readily obtained by using equation (A.7) with a single
parameter s:
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N 1 Im(r; s) \
g(s)—j; dr 47rr2p(r; s)( 0Os )

f ( Om(r; s, xr) )2
47rr p(r, S, Xr) Os

n foc . 1 Om(r; s, xp) Om(r; s, xr) d/
27r2p(r; s, Xr) Os Oxi ds
n foc . 1 Om(r; s, xp) Om(r; s, Xr) %ﬁk (A18)
4mr?p(r; s, Xr) Ox! Oxk ds ds '
where xr(s) = (%, e %)F.

Appendix B. Derivation of the most-likely cluster distribution

As shown in appendix A, the dynamics of the arc-length parameter s along the MLP is governed by the stochastic
differential equation (4). Accordingly, the probability distribution P(s; t) for observing a nucleation cluster ata
certain position s on the MLP (see figure 1) at time ¢, satisfies the Fokker—Planck equation [62]:

P, t) . 859(5) VPN Y ) _ 031
o ( ()——F—+ g /() PR () |PGs, 1) = s (B.1)

with J(s) being the probability flux at s. While finding an exact analytical solution for equation (B.1) is a hard (if
not impossible) problem, a simple case admitting a solution is that of a steady-state system with constant
probability flux J. Under such conditions,

( ~i(s )0ﬁ9(5)

J=— _I/Z(S)Qg_l/z(s))Pst(S)’ (B.2)
Os

for which the steady-state distribution can be readily found:
Ri(s) = A g2 (s)e 70 — %g‘ 2(s)e= ) f g'/%(2)e™@dg, (B.3)

where A is a normalization constant. To ensure such a steady-state regime with nonzero flux, we have to impose
aboundary condition that removes super-critical clusters once they reach a given size s, > s. Hence, imposing
that the steady-state distribution must satisfy Py (s ) = 0 results in the desired equation for the nucleation
cluster distribution:

Bu(s) = %gl”(ﬂe-ﬁﬂ@ [ gr@e . (B.4)

Finally, the equilibrium regime is identified with a zero probability flux, i.e. § = 0. Therefore, when the system
is an equilibrium (i.e. undersaturated) state, the cluster distribution will be given as follows,

Ryq(s) = Ag'/?(s)exp(—BQ(s))

= Aexp (fﬂQ(s) + %logg(s)). (B.5)

Appendix C. Derivation of the most-likely nucleation rate

The nucleation rate measures the mean production rate of super-critical nuclei (i.e., s > s.) per unit volume,
which in turn determines the mean time required for the nucleation cluster to abandon the metastable basin
(i.e.,0 < s < s.).Then

1d o0
I= fN dN N.()P(N; 1), 1)

where N, = N(s,) is the number of molecules inside the critical nucleation cluster, P(N; f) is the cluster
distribution in terms of the number of molecules inside the cluster, N,(t) = j(; “dN n (N; t)and

P(N;t) = %, so that N(f) can be understood as the normalization constant of P(N; ). Applying the
0 n ;

time derivative in equation (C.1) and using equation (B.1):

14



10P Publishing

NewJ. Phys. 20 (2018) 083019 M A Durdn-Olivencia et al

LN [ N [ OP(NS )
J= fN* AN P(N5 1) + =5 fN* N =
1 dN.(t) > N.(t) .
_1 p Nl 5N 1), 2
vV 4 N dN P(N, t) + v J(Nys 1) (C.2)

For the steady-state with a constant probability flux, J, satisfying the boundary condition at s , the first term in

equation (C.2) does not contribute, since N(tf) = N, which eventually produces:
N,
] — ¢ . C.3
—53 (€3)

But P, must be normalized, so that:

g2 (5)e 0 [ g1/2(2)edz

Ht (S) = B P s (C‘4)
fo+ ds g'/2(s)e 790 fs "¢ (2)eMDdz
which can be now substituted into equation (B.4) to eliminate J:
N, D
] (C.5)

Vv f05+ ds g1/2(s)e<ﬁsz(s) fss+g1/2(z)er‘m(z)dz

This still leaves the question of determining the total population of clusters N.. To do that we can impose the
following condition on the total number of molecules N(INy) in clusters up to size N,

) = [ ¥ AN Na@N) = N, ) ¥ AN NRN) = N, ) g NOR (), C6)

where we have made use of the covariant structure of the theory, so that P(N)dN = P(s)ds. Manipulating
equation (C.6) yields:

i ds g/2(9)e7 0 [ g1/2(2)e ™ dz

N. = N(INy) . (C.7)
fos(No) ds N (s)gl/z (s) e P2 f5+ g1/2 (Z)e‘ﬁﬂ(z)
After substitution of equations (C.7) into (C.5), we obtain the nucleation rate,
D p(N
J(No) = P (€8)

j;S(NO) ds N(S)gl/Z(S)efﬂQ(s) j;5+ gl/Z(Z)eﬂQ(Z)

where we have made use of the definition of the average density p(Ny) = NM(Ny) / V. To remove the dependence
on the parameter Ny, we will use Ny = N(s,), so that s(Np) = s Finally, for low and moderate supersaturations
we expect that most of the material exists in the form of small clusters, hence p(Ny) ~ p, . Combining these
results we eventually obtain,

P

21,

_[* VEG) o [ N BOG)
tnffo dsN(s)?e fs ds’\/g(s))e (C.9)

where we have introduced the definition of the most-likely nucleation time, #,,.

Appendix D. Theoretical details

D.1. Interaction potential
The theoretical framework developed in this work was tested with a model globular protein, assumed to interact
via the effective ten Wolde—Frenkel potential [40]:

00, r<o
6 3

v(r) =446 1 1 , (D.1)
(O O

where a = 50, ¢, is the depth of the potential well and o is the hard-core radius. All numerical results in this
work are reported in reduced units, using o and ¢, to scale lengths, energies and times.
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D.2.CNT
Consider a system set initially in a metastable state with an average density p._, which will eventually nucleate a

new phase of density pgb“]k), such that
W (p) = WP, n=0,1, (D.2)
with w®(p) = dﬂ;;p(f) and w(p) = f(p) — pp,where f(p) is the Helmholtz free-energy per unit volume and 1

the chemical potential. The CNT framework is formulated on the basis that the nucleation clusters are governed
by a single order parameter, the size of the aggregate. Thus, a model of the work of cluster formation is built
assuming spherically symmetric clusters with the same density as the final stable state. Moreover, a sharp
interface between the cluster and its surrounding is tacitly hypothesized. Thus:

p(r;x) = p(r; R) = py OR — 1) + p O — R), (D.3)
with p, = pgbulk) and ©(r) being the Heaviside step function. As a result, the work of cluster formation is given by
the widely known expression:

AQ = QR) — Q. = 4?7TR3A(.‘)(,00) + 47R*y©), (D.4)

with 79 being the planar surface tension at coexistence and Aw(p) = w(p) — w( p..)- From standard
arguments [1, 20, 21, 63], the time-evolution equation for the nucleation cluster distribution, i.e. the
corresponding Fokker—Planck equation, is readily obtained. From this and following classical arguments [1, 46],
the CNT expression for the nucleation rate is derived:

2
D P
4T\ o= Py o Pso

I R dR R exp(BAQ(R))  font

Jont = (D.5)

with R, being any value bigger than the critical radius R.. We note that the classical relationship between the
nucleation rate and the escape time in equation (D.5) has been used to implicitly define #cr. This expression is
not covariant, meaning that estimations made with it will depend on the choice of the order parameter [62].
However, the results produced by equation (D.5) and the covariant counterpart from one-parameter MeNT
only differ slightly, as discussed in detail in previous works [46—48]. This way, we can use as a benchmark either
tent from equation (D.5) or the MFPT [47]:

er dR R3/2e800R) fR dR’ R/3/2e—BAR)
0 0

tCNT .
Dp, /47 (py — py)?

mfp —

(D.6)

interchangeably, for all practical purposes. The reason for the choice of equation (D.5) is that it is the standard
CNT definition.

D.3. MeNT: two-parameter model expressions
The formal derivation of MeNT has been reviewed in appendix A and is sketched in figure A1. The two-
parameter model of nucleation clusters was, for the first time, introduced in [47], and is given by:

PR, p))=p, OR — 1) + p, O — R)O(R — 1)
+ p 00 — R) (D.7)

with p, being fixed by the conservation of the total mass, so that R*p, + (R} — R%)p, = R p, .. Theradius R,
tulfills:
2
RP=R3, + /\[M] R, (D.8)
Pro

where R, and A are constants that must be provided to the model. A parametric study was carried outin [47],
showing that Ry, limits the size of clusters with density close to p, and that A modulates the accessible region of
the parameter space. To avoid side effects, A and Ry, are set so that nearly all the parameter space is accessible.
We take the values A = 10 and R,,,, = 200. The work of cluster formation related to this model,
equations (D.7)—(D.8), is given by [47]:

AQ(py, R) =V (R)Aw(py) + Aw(p)(V(R) — V(R))
+ K(p; — pp)*S(R) + K(py, — p)*S(R) (D.9)
with V (r) = %”P and K = v /(pl? — p9), where p{ and p? are the equilibrium bulk densities at

coexistence. Finally, the components g;; the metric tensor (see figure A1) are obtained by substituting
equations (D.7) into (A.7). The metric tensor is required to compute the MLP, I. The kinetic coefficient g(s),
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equation (5), can be readily written in terms of the components g;; when I' is re-parameterized in terms of p, (i.e.,
R = Rr(po)) by using equation (A.18):

2
dR dR
gl = gpo,po(Po) + ngo,R(Po)d—pO + gR,R(po)(d—pO] > (D.10)
with the metric components given as follows:
4_7T (pO - poo)z R3 1
5 (0 = py) (A +y+y?

8&r.r (po) =

dR
(5+ 6y + 3y> + y°) + 3y2(1 + 3y + y)—

X 4R\ dr (D.11)
30+ 3y + 6% + 5y3)(—‘)
dR
4 (Py — Ps) IL—y
(p) = —~ R
ST 50 e~ oyt (U y
2(5 4+ 6y + 3y* + y°)
dR
1321 + 3y + yH—2
y=( y y)dR
3 (py — px) ARy (D.12)
X 2 0 00 .
FIyA+3y +yI)N
R (1 -7 dp,
dRi[ 3 (py — po) dRy
+2y2(1 4 3y + 6y* + 5p%) — = L0 Tl 1
y( y + 6y y)dR R =) dp,
AT RS 4m 1 (1 —y)
gﬁo’lJo(pO) TN m 3 RS 2
45 p, 45 (p — poy?) 1+y+y
G+ 6y + 32 +y%)
3 (pp — p) dR
+3y(1 + 3y + yz)(—M—l)
X Ri (1 —y%) dp, (D.13)

2
3 (py — py) dR
+y(1 + 3y + 6% + 5y3)(—M—‘J

Ry (1 —y% dp,

where we have introduced y = R/R, for simplicity.
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