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We propose an approximation to the density-functional theory of classical nonuniform systems
that reproduces all the formal properties of the free energy and requires only the direct correlation
function of the uniform system as input. By introducing additional assumptions into this theory a
direct relation can be established with most of the existing nonperturbative theories. When the
theory is worked out for the case of the hard-sphere solid, very good agreement is found with the
computer simulations. The free energies, pressures, and fluid-solid coexistence data are reproduced
to within the error bars of the simulations. The theory also predicts stable bcc and sc phases that
could play a role in the final nucleation of the equilibrium fcc phase.

I. INTRODUCTION

The density-functional (DF) theory of classical nonuni-
form systems' has become an increasingly popular tool to
study the thermodynamic (and to a lesser extent also the
structural) properties of liquid-vapor,? liquid-solid® first-
order phase transitions and the associated interfaces.
The DF theory itself is essentially a direct-correlation-
function- (DCF) based approach to equilibrium statistical
mechanics.* Because the DCF is relatively insensitive to
the details of the interaction potential, it has proven to
be a good starting point for developing approximation
schemes. The same is thus also true for the DF theory.
Approximate DF theories usually aim at describing the
(thermodynamic) properties of the nonuniform system
(fluid interface, solid, etc.), characterized by a nonuni-
form one-particle density, in terms of the (structural)
properties of the uniform system (usually the bulk liquid),
characterized by a uniform one-particle density, the latter
properties are assumed to be known. For concreteness,
we henceforth will speak of the nonuniform system as the
solid and the uniform system as the liquid (or fluid) al-
though many other situations (e.g., liquid crystals®) can
be considered equally well. In these terms then, the early
DF theories are all based on a perturbative expansion® of
the free energy of the solid around the free energy of the
liquid. Very little care was given to the theoretical foun-
dation of this expansion and it is only recently that this
whole procedure was called into question.®’ Several au-
thors also proposed nonperturbative approaches to the
DF theory but again very little attention has been paid to
the theoretical foundation behind these distinct propo-
sals. In the present investigation we focus our attention
on these theoretical questions and bring to the fore-
ground the more successful ideas. In doing so, we will
formulate an approximate DF theory that allows us to es-
tablish various relations between some of the earlier pro-
posals.

In Sec. II we first recall some of the necessary DF rela-
tions. The various approximate (nonperturbative) DF
theories will be considered in Sec. III. The results ob-
tained from these theories will be discussed in Sec. IV for
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the particular case of the hard-sphere (HS) solid. Our
conclusions follow in Sec. V.

II. THE BASIC DF RELATIONS

We consider a classical equilibrium system enclosed, at
the inverse temperature S=1/kyT, in a vessel of volume
¥V, and corresponding to an (average) number of particles
pV, where p is the (average) number density resulting
from spatially averaging the local density p(r) over the
volume V:

_ 1
p——V-fdrp(r) .

Here and below, any implicit dependence on T and V [of,
e.g., p(r)] will not be indicated explicitly. The quantity
of interest is the (Helmholtz) free energy F of this system.
It depends (besides on T and V) on the density, which is
the variable of major concern here.

For the solid (s), which is our prototype of nonuniform
system, the density is nonuniform p,(r) and the depen-
dence of F on p,(r) is thus a functional dependence. We
will indicate this by square brackets' as F =F[p,], indi-
cating hereby that F depends on p,(r) for all spatial argu-
ments r belonging to V. It consists of three terms,
F=F4+F,, +F,.: the ideal-gas contribution Fj4,

Filp,1=B7" [ drp,(n){In[A%p,(n]—1} ,

(2.1)

(2.2)

with A being the thermal wavelength, the contribution
F.,, from the external field ¢,(r),

Feulp,1= [drp (0, (r) ,

and the excess term F,, stemming from the interatomic
interactions, which is sometimes written as

(2.3)

Fulp,1= [ drp(0)u(x;(p,]) 2.4

introducing hereby a local excess free energy per particle
Yex(r;[ps]). This quantity should not be confused with
the true excess free energy per particle @[ p; ]:
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bexlps 1= Fexlps1/psV

= [drp,einslp,) [ [ drp,(x)

where according to Eq. (2.1) p, V' = f drp,(r') is the (aver-
age) number of particles and p, the average density of the
solid.

For the liquid (1), which corresponds here to the uni-
form phase, the density is uniform p; and the above func-
tional dependence becomes an ordinary dependence

(2.5a)
(2.5b)

which we indicate, as usual, as F =F(p;). The above

equations [(2.2)-(2.4)] then reduce to
Fiyp))=B""Vp,{In(A%p;)—1} , (2.6)
Fo(p))=0 (2.7
F,(p))=Vp,lp)) (2.8)

whereas Eq. (2.5) reduces to ¢.,(p;)=1v.,(p,;), while (2.7)
results from @,(r)=0, as is appropriate for a translation-
ally invariant or uniform bulk liquid. Notice, however,
that in Eq. (2.3) we are not allowed to put ¢,(r)=0, since
@,(r) is necessary in order to define the functionals
uniquely' by fixing completely the nature of p,(r), e.g.,
the orientation of the crystalline axes and the other
symmetry-breaking characteristics. The role played by
the external field is thus more subtle for the solid than for
the liquid. Here we will assume, as usual, that once the
thermodynamic limit has been taken (which will be un-
derstood henceforth) all intensive properties no longer
depend explicitly on ¢,(r), except of course for those
features already taken into account via p (r). We will
therefore delete F,,, from our considerations. Everything
thus boils down to obtaining a more explicit expression of
F,, the only unknown quantity encountered as yet. A
crucial role is played then by the fact that F . [p,] is a
generating functional' of the successive DCF, defined ac-
cording to the following chain rule (n =1,2, .. .):

L 8C, y(ry, .., yslps D
C,(ry, ..., rlp D= Spo(r,) (2.9a)
&"C
— 0[ps] , (29b)
8ps(rl) T Sps(rn)
where, for brevity, we have put Cy[p,]=—BF[p;]

The differential relations (2.9) can also be “inverted” with
the help of functional integrations in density space. If we
parametrize the density variable as p,(r), with A=0 cor-
responding to some known reference (r) density,
polr)=p,(r), and A=1 to the actual solid density,
pi(r)=p,(r), then we obtain from (2.9) the equivalent in-
tegral relations

Colp:1=Colp, 1+ [ dr [ 'drpi(r)Cy(x;[ps))

=C,lp, 1+ fdrf‘dxp;u)c (5;[p,])  (2.10a)
+[drfar [ dkf d\'pj(r)pj(r)
X Cy(r,r';[AMps D)
(2.10b)
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where we have set p;(r)=0dp,(r)/dA and have stopped at
the C, level since of all the C,’s defined by Eq. (2.9) only
the ordinary (Ornstein-Zernike) DCF C, is known to
some extent.* We will therefore designate C, henceforth
as “the” DCF: C(r,r’;[p,])=C,(r,r';[p,]). Notice also
that because of the uniqueness of these functionals' one
can simplify (2.10) by taking a linear path in density
space:

=p,(r)+A[p,(r) (2.11a)

palr) —p, ()],

pu(r)=p,(r)—p,(r)=Ap(r) , (2.11b)

while for the double A integral in (2.10b) one can use the
identity
[lanfavnan=['ara—nmm, (2.12)
0 0 0
valid for any A (A). The central relation between F,,[p, ]
and the DCF reads thus in these notations:

82BF‘C)([F)S]

Clnr e D= = g ()

(2.13)

which is the differential form corresponding to (2.9b)
with n=2, or

BF,.[p,]= fdrfdrf dlf dAp,(r)p,(r’)

XC(r,r';[A'ps])
(2.14)

which is the integral form corresponding to (2.10b) for
p,(r)=0, which fixes the integration ‘“constants” in
(2.10b) as C,[0]=0, C,(r,[0])=0. Notice that Eq. (2.14)
is indeed of the form assumed in Eq. (2.4).

For the liquid these fundamental relations [(2.13) and
(2.14)] become

8°BFexlp;]

el , 2.15
8p,(r)dp,(1') |p,(r)=p, 2.15)

Cllr—r'l;p))=—

=—Vp} 'an [rarcen 2.16
BF..(p;) Vp,fdrfodlfodkC(|r\,?»p,) (2.16)

where, in the differential relation (2.15), the uniform limit
ps(r)—p, has to be taken after the functional derivatives.
Notice also that the integral form (2.16) is equivalent to
the usual relation

BF..(p, 2.17)

- b1 P, o
) Vfdrfo dpfode(|r|,p)
resulting from integrating the compressibility equation of
state.* In the form of Eq. (2.17) the similarity with (2.14)
is quite striking: in (2.17) the liquid is reached by in-
tegrating the DCF in density space from p=0 to p=p,
along a uniform density path whereas in (2.14) the solid is
reached similarly by integrating from p(r)=0 to
p(r)=p,(r) along a nonuniform density path. As an al-
ternative one can use Egs. (2.10)-(2.12) with the liquid as
a reference state p,(r)=p, leading to
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BFex[ps]ZBFex(p1)+BV(ps P )”ex(pl)— fdl'fdrlfold)\.(l*l)C(r,r';[pl-}-}\(pS _Pl)])(Ps(r)_PI)(Ps(r')_PI) ’

(2.18)

where p.,(p;) is the excess chemical potential of the liquid.! Equation (2.18) now has the formal appearance of a per-
turbation expansion of the excess free energy of the solid around that of the liquid. Taylor expanding the A integral of

(2.18) and using (2.9) one obtains

hd 1
BFex[ps]:ﬁFex(p1)+/3V(ps —Pi )y'ex(pl)— 2 mfdrl’ s ’drn +2Cn +2(rl’ RS +2;P1)
n=0 N

which is the thermodynamic perturbation expansion at
the basis of all perturbative DF thecries. This perturba-
tion series is usually truncated at the second-order or C,
level:

ﬁFex[ps]:ﬁFex(p1)+BV(ps —P1 ):u’ex(pl)
—%fdrfdr’C(r—r';p,)(ps(r)—p,)

X(p r')—p)+ -, (2.20)
as in the original Ramakrishnan-Yussouff theory.® Re-
cently, it has become clear however that the convergence
of the expansion (2.19), and hence of all perturbative DF
theories, is quite questionable.®’ From now on we will
therefore consider only the nonperturbative DF theories
based on the unexpanded expressions (2.14) or (2.18).

III. THE NONPERTURBATIVE DF THEORIES

The central idea underlying all the approximate DF
theories is, in our opinion, that it is possible to obtain
good thermodynamic (and to a lesser extent also structur-
al) data for the solid (or any other nonuniform system) by
using only the structural (and hence also the thermo-
dynamic) data of the liquid (or the uniform system) as in-
put. This (at first sight quite surprising) possibility is
brought about by the similarity of the thermodynamic
properties (such as the equation of state) of the two other-
wise quite different condensed phases. The quality of the
results obtained in this way depends strongly on how this
basic idea is implemented in practice. As far as we can
see there are essentially two ways of performing such a
mapping of the solid onto some “effective” liquid.

(i) Thermodynamic mapping. One can map the un-
known excess free energy of the solid F.,[p;] or better
the  corresponding intensive  property ¢, [p;]
=F,[p;1/p;V the excess free-energy per particle, onto
that of some effective liquid ¢.,(p;)=F.(p,;)/p,V by
writing

¢ex[pS]=¢ex(ﬁl) > (31)

X(Ps(rl)_Pl)"'(Ps(rn+2)_Pl) » (2.19)

where p; is the (uniform) density of the effective liquid
which is used to represent the solid of density p,(r). One
can reconstruct then the total free energy F[p,] by add-
ing Fi4[p;] of Eq. (2.2) to F,,[p,] obtained from Eq. (3.1).
Let us examine for the consequences of Eq. (3.1). The
density of the effective liquid p, is seen from Eq. (3.1) to
become a functional of the density of the solid p,(r):

pi=pilp,] . (3.2

The nature of this functional relation can be partially
resolved by returning to the exact relations (2.14) and
(2.16). In terms of these relations Eq. (3.1) can be rewrit-
ten as

;—1;fdrfdr’fold)\fo}\dk’ps(r)ps(r’)C(r,r’;[k'ps])
=pi [dr [ 'anr [ axcied;np,) (3.3)

where C (r,1’;[p; ]) denotes the DCF of the solid of densi-
ty ps(r) and C(|r—r'[;$,) the DCF of the liquid of densi-
ty py. The functional relation (3.2) can now be made
more explicit by rewriting Eq. (3.3) as

A —_ 1 ’ ’ ’,
Pl[Ps]_—psVfdl'fdfps(f)Ps(f wir,r';[p, ] ,
(3.4a)

fn]dkaAdA’C(r,r’;[K'ps])
foldkfoxd)»’fdrC(|r|;7k',6‘l[ps]) ’

w(r,;[p,])=

(3.4b)

which shows that p), if it exists, must have the form of a
doubly weighted solid density (3.4a) with w(r,r’;[p,]) of
(3.4b) as a weighting function. Notice that in the uniform
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limit p,(r)—p;, we have Cl(r,r’;[p,])=>C(|Ir—r'|;p;)
and (3.4b) implies then that w(r,r’;[p,])—>w(|r—r1'[;p;)
with

[drwzl;p)=1, (3.5)

where we have already taken into account that (3.4a) im-
plies that

pilps1—p; when p(r)—p, . (3.6)
Notice also from (3.4b) that the normalization property
(3.5) holds only in this uniform limit.

(ii) Structural mapping. One may also observe that the
only unknown of (2.14) is, in fact, the DCF of the solid.
It is thus possible to map, instead of the full F . [p,] ex-
pression, only the DCF of the solid onto that of some
effective liquid. The attention is hereby shifted from a
thermodynamic property (F,,) to a structural property
(the DCF). One obvious difference between the DCF of a
solid and of a liquid is that the latter is a translationally
invariant function while the former is not. This difficulty
.can be easily bypassed by observing that the only thing
which matters for the computation of F . [p,], which is
our final goal, is the density averaged DCF [cf. Eq.
(2.14)]. The structural mapping of the solid onto the

~ fdrfdr’ps(r)ps(r’)fnld}»f:dk’C(|r—r'|;f)‘2[k'ps])
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effective liquid can thus be defined by
[ dr [drp,(r)p,(r)Cr,1;[p, 1)
=fdrfdr'ps(r)ps(r')C(Ir—r’l;ﬁz) ,

where p, is the (uniform) density of the effective liquid
whose DCEF is used to describe the averaged DCF of the
solid of density p,(r). According to the structural map-
ping of Eq. (3.7), we have

(3.7

pr=palps]1, (3.8)

a relation which is the structural analog of (3.2). Equa-
tion (3.7) implies then that Eq. (2.14) can be rewritten as

BFulp)=— [dr [ar [ar [ arp,p,(x)
XCllr=rliplAp,]) ,
(3.9)

which when compared to Eq. (2.16) shows that in the uni-
form limit p,(r)—p; we must have p,[p,]—p;, just as for
the thermodynamic mapping [cf. (3.6)].

Notice, finally, that if we combine the thermodynamic
mapping of (3.3) and the structural mapping of (3.7), we
obtain instead of (3.4), the expression

ﬁl[ps]-

which is now entirely expressed in terms of the liquid
DCF.

This is as far as one can go (on general grounds) with
the idea of mapping the thermodynamic properties (here
F.,) of a nonuniform system (here the solid) onto the
(thermodynamic or structural) properties of a uniform
system (here the liquid). If these mappings exist and are
unique, then the above relations will remain exact. We
now consider some of the approximate determinations of
these mappings.

A. Generalized effective liquid approximation (GELA)

The above ideas are useful only if they lead to some
practical way of computing the excess free energy of the
solid. Given some liquid DCF and p,(r) (which will be
determined later by minimizing the total free energy) we

p.v [ ar [ an farCllel;ipilp,D

fdrfdr'ps(r)ps(r')f;dlf:d}»’C(|r—r’|;"[}»’ps])

(3.10)

f

have to determine both 5;[p,] and p,[p, ] in order to find
F.,[p,] from Eq. (3.10). The basic assumption which will
be made here is that the effective liquid which is used to
reproduce the (density averaged) structure of the solid
should also reproduce its thermodynamics (here the ex-
cess free energy per particle), i.e., we identify the thermo-
dynamic and the structural mapping as being one and the
same mapping, or explicitly,

p\l[ps]=ﬁ2[ps]Eﬂps] ’ (311)

This can also be rephrased by saying that the thermo-
dynamic mapping defines what we mean by “effective
liquid” while the structural mapping is the unique ap-
proximation used to close the equations.

In this case p{p,;] will be defined by Eq. (3.10), which
becomes now using (3.11)

plps1= T ., )
pSVdekfo dx' [ drC(|cl;Aplp, 1)

’ (3.12)

which has the appearance of a self-consistent equation for the determination of § in terms of p,(r) and the liquid DCF
C(Irl;p;). The self-consistent aspect of Eq. (3.12) is due to the fact that we have imposed a self consistency between the
structure and the thermodynamics of the effective liquid. In order to avoid confusion with some of the earlier approxi-
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we will call the present approximation (3.12) the “generalized” effective liquid approximation.'®

Changing p,(r) to Ap,(r) in Eq. (3.12) we obtain a more convenient form for this integral equation:

fdrfdr’ps(r)ps(r')

1 A a ’ et ’
Y fo daf0 da'C(lr—r'|;pla'p, ]

plrps]=

which is equivalent to the following differential equation:

axz

psVfoldafoada'fdrc(|r|;a’ﬁ[kps])

1 ’ ’ v,
(}»B‘pex(ﬁ[)\.ps])) —pS—Vfdrfdrps(r)ps(r )Clr—r'l;5[Ap, 1)

) (3.13)

(3.14)

where ¢.,(p) is the excess free energy per particle of the liquid as obtained from Eq. (2.16). Once Eq. (3.14), or Eq.
(3.12), has been solved for p[p;] we obtain the excess free energy of the solid from either (3.1) (with g;[p,]1=plp,]) or

from (3.9) (with g,[p, 1=p1p, ]):

BFSEAp,1=~p,Vplp,1 [ 'dA [ 'an [ dxClel;nplp,])

=— fdrfdr’fo dkfo dANpy(r')p(r)C(Ir—r'|;p[M'p, 1) -

Notice also that p of Eq. (3.12) can be written, in analogy
with (3.4), as a doubly weighted density:

j—, 1 ’ ’
ﬁ[ps]—ﬁfdrfdrps(r)ps(r )

XwOELA([r—1'|;[p, D , (3.16a)
WOELA([r—r'|; [p, D
[lar [lance—rl;pnp,D
§— 9 (3.16b)

- S arf an farcenpe,)

where it should be observed that the weighting function
is normalized only in the uniform limit [cf. (3.5)]. The
major interest of the GELA, defined by say Egs. (3.12)
and (3.15a), is that it maintains all the formal properties
of the exact F.,[p,] [cf. Eq. (2.9)]. This is due to the fact
that Eq. (3.15b) establishes the same functional relation
between FGFM4[p ] and C(|r—r'[;plp,]) as does Eq.
(2.14) for the exact F,,[p,] and C(r,r';[p;]). As a conse-
quence we obtain from (3.15b) that

8BF oA [p; ] e ' '
W——fdr fo dAp (e )C([r—r'l;p[Ap, ] ,
(3.17)
S’BFGE [ps]
ooty cUrTr; 1
sp.(op.(r)  Clr=riAle) (3.18)
8"BFCELA[p | _ 8" 2C(Ir,—r,l;p80p, 1 .19
8ps(rl) Sps(r,,) 8ps(r2)...8ps(rn) ’ .

which correspond to the formal properties (2.9). [Notice
that for n > 2 the right-hand side (rhs) of Eq. (3.19) has to
be symmetrized with respect to the arguments
r,...,r,.] The GELA thus expresses the excess ther-
modynamic properties of the solid in terms of the DCF of
the liquid, maintains all the formal properties of the DF

(3.15a)

(3.15b)

f

theory and remains exact in the uniform limit. This is
about as far as one can possibly go with the effective
liquid idea. Notice that in the uniform limit Eq. (3.19)
can also be used to study the higher-order DCF of the
liquid.!" Because of the translational invariance of the
rhs of (3.18) it can, however, not be used to study the
structural properties of the solid (remember however that
it is the thermodynamic properties of the solid we origi-
nally set out to study here). Finally, we note that the ma-
jor asset of the property expressed in Eq. (3.18) is that the
GELA is a complete theory. If Eq. (3.18) did not hold,
then the approximate free-energy functional we obtained
would imply some new effective liquid DCF. One would
then be forced to solve Egs. (3.16) again with this new
DCEF, and to thus iterate until Eq. (3.18) was satisfied, if
one wished to obtain a self-consistent solution. This is, in
fact, the case with all the other nonperturbative DF
theories, although, because of its difficulty, no one did ac-
tually carry out this iteration process.

B. The self-consistent effective liquid
approximation (SCELA)

In an earlier publication® one of us introduced an ap-
proximation closely related to the GELA but which was
based on a slightly different structural mapping. This ap-
proximation, which was called the self-consistent effective
liquid approximation (notice, however, that the GELA is
in fact more “self consistent” than the SCELA), is based
on the same thermodynamic mapping as that of Eq.
(3.15a) but replaces the structural mapping of (3.15b) by

BF S ps]
’ 1 A ’ ’
=—Jar[dr [ di [ dnp )p,(r)
XC(lr—=r'|;A'plp 1)
(3.20)

which differs from (3.15b) in that p{Ap;] has been re-
placed by Ap[p,] in the density argument of the liquid
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DCF. This then has the technical advantage that the
basic integral equation (3.12) is transformed into a tran-
scendental equation involving only p{p,], whereas (3.12)
involves both plp,] and p{Ap,]. An important physical
consequence of this, however, is that the structural rela-
tions (3.18) and (3.19) are lost. In the SCELA equations
(3.16a) and (3.16b) become

__1 , /Y, SCELA([¢_ t].
ﬂps]—pszdrfdrps(r)ps(r)w (lr=r'l;[p, D ,
(3.21a)
wSEA(e—r'[;[p, 1)
[lar [fance—rlrplp,D
~ e fa cevpipy . O
J dn [ dx [drcilrl;npip,)
so that one now has the normalization property
J drwSCELA(e|;[p, D=1 (3.22)

satisfied for any p,(r). The SCELA is exact in the uni-
form limit (just as is the GELA) because both p{Ap,] and
Aplp;] tend to Ap; when p (1) tends to p,. Besides this
the SCELA can be considered as a further approximation
to the GELA. We have found (see below) that in fact the
SCELA yields a rather good approximation to the
GELA. This can be understood by observing that in the
end points of the A integrals appearing in (3.21b), i.e., for
A=0 and A=1 [see (2.12)], p{Ap,] and Ap[p;] become
identical.

C. The modified weighted-density approximation (MWDA)

Recently, Denton and Ashcroft!? have introduced a
nonperturbative approximate DF theory which they
called the modified weighted-density approximation
(MWDA) because it is based on some of the ideas of the
weighted-density approximation (WDA) of Curtin and
Ashcroft,!* which is itself a nonperturbative generaliza-
tion of the earlier theory of Tarazona.'* The latter two
theories'>!* are intrinsically more complicated theories
than those considered here because they involve a nonun-
iform effective liquid and require consideration of the lo-
cal excess free energy, ¥.,(r;[p;]) of Eq. (2.4). We will
therefore not consider these theories here although they
could be discussed along similar lines as already ex-
plained elsewhere.’

We now return to the MWDA of Denton and Ash-
croft.'? This theory is based on the thermodynamic map-
ping (3.1):

wVPAlp 1=0¢..(P) (3.23)

but contrary to (3.1) the DF expression (2.14) for ¢.[p;]
is not used, so that (3.4) does not follow here. Instead,
(3.4a) is postulated:

=_1 , ,
ﬂps]——l)s—Vfdrfdrps(r)ps(r )

XwMWYPA(Ir—r'[s[p, ], (3.24)
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where the weighting function w™YPA(|r[;[p,]) is not
given directly by (3.4b) but is defined by requiring that (i)
it be normalized

J drwM¥PA(r|;[p =1, (3.25)
and (ii) it be a function of p{p; ]
wMWPA(I e[, D=wMYPA(|r|;5lp, 1) , (3.26)

so that Eq. (3.24) becomes a self-consistency relation, and
(iii) that it be further determined implicitly by requiring
the following relation:

§BF e A p, ]

3.27
8p,(r)dp,(r') .27

=—C(|lr—r'l;p))
ps(r)=p;

to hold for any uniform density p,. The result they ob-
tain is that

1 ”
(Clzl;p)+ > PiBoelp))

fdr

MWDA( |

w rl;p))=

Clelip)+4piBea(p)
(3.28)

where ¢/ (p;) =00, (p;)/dp}, with ¢.(p,) the excess
free-energy per particle of the liquid [cf. Eq. (2.16)]. No-
tice the following relations (i) Equations (3.23) and (3.24)
are identical to those of the GELA or the SCELA, except
for the fact that here Eq. (3.24) is postulated whereas in
the former theories it is derived from Eq. (3.23). (ii)
Equations (3.25) and (3.26) are valid in the SCELA but
not in the GELA. (iii) Equation (3.27) holds only in the
GELA [where the stronger property (3.18) holds] but not
in the SCELA. Notice finally that both in the GELA and
in the SCELA, the weighting function [see (3.16) and
(3.21)] has the same range as the liquid DCF whereas
here it has an infinite range [see (3.28)]. From the present
DF viewpoint it also appears that the normalization con-
dition (3.25) and (3.26) of the MWDA is in fact incompa-
tible with the requirement of (3.27), as can be seen from
the fact that in (3.4b) the exact weighting function cannot
be normalized.

D. The effective liquid approximation (ELA)

In the earlier theory of Baus and Colot® Eq. (2.19) was
taken as starting point. Although this relation is as exact
as (2.14), the fact that it uses a liquid as reference state
for the functional integration of (2.13) [see (2.10)] pre-
cludes a direct comparison with the above approximation
schemes. For the sake of completeness, it is nevertheless
of interest to rephrase the original effective liquid approx-
imation® in the present language. Only the structural
mapping (3.7) was used in this theory, so that Eq. (2.18)
becomes
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BFex[ps]=BFex(p1)+BV(ps —Pi ).u'ex(pl)
1
—[ar[ar [ ara-n)
XC(lr—r'l;p3lp; +Ap,—p)])
X(p(r)—p, Nps(r')—p;) .
(3.29)

Furthermore, the structural relation (3.8) §,=p,[p,] was
taken not from DF theory but from an extraneous condi-
tion relating the density of the effective liquid 5, to the
position of the shortest nonzero reciprocal-lattice vector
(RLV) of the solid by scaling the position of the main
peak of the static structure factor of the effective liquid to
this RLV. Since this RLV depends only on the average
density p, of the solid [see (2.1)], the functional 55[p, ] de-
generates in this case into an ordinary function §,(p;).
The density argument of the DCF of (3.29) then becomes
Palpi +AMp; —p;)], which by a particular choice of the
reference state p;, namely p; =p,, can moreover be made
independent of A. For this particular reference state the
second term in the rhs of Eq. (3.29) also drops out and
one obtains finally:

BF & A [ps 1=BF o (p;)— % [dr [drclir—r;p50,0]

X(ps(r)—p,)

X(ps(r')—ps) , (3.30)

where the A integral has been trivially performed
[ f (l)d)»( 1—A)=1]. The somewhat surprising result is
that although this theory uses no expansions and hence is
nonperturbative, the final equation (3.30) is quite similar
to the second-order approximation of Ramakrishnan and
Yussouff® [compare Egs. (3.30) and (2.20)]. This has led
to some confusion in the literature. The clue to Eq. (3.30)

J

— 1 ’ ’ 1 a ’ v, '
B¢e,(a0)————pszdrfdrps(r)ps(r )fo dafo da'C(lr—r'l;pla'p, ] ,
’ 1 ’ ’ 1 ’
B¢ex(ao)+(ao+al)Bd)ex(ao):-————psVfdrfdrps(r)ps(r )fo daC(lr—(r')|;plap,]) ,

2Aay+2a,+0,)864u(a0) +ao +a, PBgilag)= =1 [Ldr [ dr'p,(wp,r)C r—rliplp,D

etc., where a, =a,[p, ],

L 3glp) . 3%(p)

¢ex(p) ap ’ ¢ex(p) apz ’

and p{ap; ] in the rhs of (3.32) is meant to be expressed by
(3.31). Notice also that Egs. (3.32a) and (3.32b) involve
all the coefficients {a,} while the remaining equations re-
late only a finite number of them [the first three for Eq.
(3.32¢)]. To solve the GELA one can then determine the
{a,} by successive approximation. First we set a, =0 for
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is that a very simple structural mapping p,[p, 1=p,(p;)
has been used. An important limitation of this mapping
however is that it is tightly bound to crystalline solids
whereas the present theories, such as the GELA, are
completely general and can, in principle, be applied to
any nonuniform system.

E. Relation between the GELA, SCELA, and MWDA

From the above it should be clear that from all the
nonperturbative DF theories, the GELA, SCELA, and
MWDA appear to be more closely related than the ELA
and the WDA which have a somewhat different status.
In what follows we point out the exact relation between
the GELA, SCELA, and MWDA. Let us start from the
more general GELA. As we have seen this theory results
from the introduction of a single approximation (the
structural mapping) into the exact (thermodynamic) map-
ping between the solid and the liquid excess thermo-
dynamics. Both the SCELA and the MWDA introduce
additional assumptions. Here we will show that both
these theories can be viewed as mathematically well
defined approximations to the solution of the GELA. To
do so we solve the GELA by expanding p{Ap,] around
A=1, since p[p,] is the only quantity which matters for
evaluating the excess free energy of the solid according to
Eq. (3.1). Equations (3.13) and (3.14) suggest then that
this expansion can be written as

o

2 A—1)a,[p,]
n=0

plAp,1=1 (3.31)

with plp;1=ay[p,]. Substituting the expansion (3.31)
into Eq. (3.13) and differentiating with respect to A yields
a sequence of equations which, when A is set equal to 1,
can serve to determine the {a,} of (3.31). The first few
equations so obtained read

(3.32a)
(3.32b)

(3.32¢)

f

n>0 and determine a, from (3.32a). Notice that this
first-order GELA solution is nothing but the solution of
the SCELA for which one has indeed that
PlAp,1=Aaolp;1=Ap[p,]. Next we keep only a, and a,
in (3.31) and determine these from (3.32a) and (3.32b)
leading to the second-order GELA solution. Continuing
this process but remembering that what we need to deter-
mine the excess free energy of the solid is only
aolp;1=plp; ], we may terminate the sequence of approx-
imations when the change in a, becomes sufficiently
small (generally, the third-order solution is sufficient, see
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FIG. 1. As an illustration of the convergence of the iterative
solution of the GELA obtained from the procedure described in
Sec. II1 E, we show an enlarged view of the reduced free energy
per particle (B4), in the region of the minimum, vs the Gaussian
width order parameter (ao?) for a HS solid of packing fraction
7=0.52 as obtained in first, second, and third order. Notice
that the first-order solution (GELA-1) is identical to the
SCELA. The change from first- to second-order solution is ap-
preciable but when going from the second- to the third-order
solution the position of the minimum remains stable while the
relative change in B¢ is 2.107 3.

Fig. 1). We thus find that although the GELA is defined
by a complicated integral equation, its implementation
actually involves little more computational effort than the
simpler SCELA, which corresponds to the first-order
GELA. Similarly, the MWDA solution results if we
disregard Egs. (3.32a) and (3.32b) and solve Eq. (3.32¢)
with the additional constraints a,=(p,a,)!’*—a, and
a,=—2a, so that ay,=p[p,] is the only unknown. Thus,
notwithstanding its physically very different derivation,
the additional physical assumptions of the MWDA, just
as the SCELA, can be recast as a mathematical approxi-
mation to the equations (3.31) and (3.32) defining the
solution of the more general GELA theory.

IV. APPLICATION TO THE
HARD-SPHERE (HS) SOLID

We now will compare the theoretical predictions of
these different nonperturbative DF theories for the par-
ticular case of the hard-sphere solid.'® This does not im-
ply that these theories are in any sense restricted to the
HS system but simply that, because of its relative simpli-
city, this system provides a convenient testing ground.
Since the results of the ELA (Refs. 6 and 15) and the
MWDA (Ref. 12) for the HS system have already been
discussed in detail elsewhere we will focus here mainly on
the predictions of the GELA and the SCELA. Our pur-
pose will thus be the explicit computation of the free-
energy per particle ¢ of the HS system. This naturally
splits into the computation of the ideal part ¢,4 and the
excess part ¢, of the total free energy ¢=d¢;3+ d.,-
Knowing ¢ we can obtain the pressure p and the chemi-
cal potential 1 from the well-known* thermodynamic re-
lations
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294 9 (pd),

= == 4.1

where p is the average number density [cf. Eq. (2.1)].

For the HS fluid these quantities are known from vari-
ous theories:*

-
Bo=(InA’p—1)+(y—1) In(1—n)+n——F~
(1—mn)

n(4—3g)
(1—n)?
=(InA’p—1)+Bé,, ,

Bp _ 1+n+n*—yn’
p (1—ny)?

Bu=§pﬂ+3¢ :

(4.2)

) 4.3)

(4.4)

where 7=(7/6)op is the packing fraction of HS of di-
ameter o. In Egs. (4.2)-(4.4) the parameter ¥ has been
introduced in order to distinguish the different theoreti-
cal results for the fluid phase:* y=0 for the Percus-
Yevick (PY) compressibility results, ¥ =3 for the PY viri-
al results, and y =1 for the Carnahan-Starling (CS) re-
sults. The latter results (CS) are virtually identical to the
computer simulation results of the HS fluid phase. This
information will now be used to construct the free energy
of the HS solid.

A. The ideal free energy

The ideal part of the free energy per particle of the
solid reads

Béialps 1=

lVfdrps(r){ln[A3 (D]-1], @53

Ps
where p,(r) is the periodic density of the bulk solid. Nor-
mally the symmetry breaking features of p,(r) should be
fixed by (i) introducing a symmetry-breaking external
field [see (2.3)], (ii) taking the thermodynamic limit of a
large system, and (iii) letting the amplitude of the exter-
nal field vanish. Here we will, as usual,’ introduce the
symmetry breaking “by hand” and omit all together the
external field from our considerations. We thus write, us-
ing a Gaussian approximation for the density profiles,

32
exp—a(r—R;)?,

ps(D)=3 |— (4.6a)

i

ps(r)=p, 3 exp(—k;/4a)exp(ik; 1) , (4.6b)
j

where {R;} are the Bravais lattice vectors of the crystal
structure and {k;} the corresponding reciprocal lattice
vectors. The Gaussian approximation embodied in (4.6)
is not exact since the density peaks are usually slightly
anisotropic. It is however a very good first approxima-
tion!> which has moreover the great advantage that the
solid density can be described in terms of a single order
parameter a the inverse width of the Gaussians. For
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a >0 Eq. (4.6) describes a periodic solidlike density while
for a=0 it yields a uniform fluidlike density. The value
of a describing the actual solid will be determined later
by minimizing the total free energy with respect to a.
The lattice structure used in (4.6) could in principle be
sorted out by the theory'® but this leads to quite cumber-
some expressions. In practice it is much easier to repeat
the free-energy evaluation for a few physically plausible
structures and determine the absolute free-energy
minimum by comparing the different calculations. Here
we will perform such calculations for the cubic lattices
(fcc, bee, and sc). Although it is known that fcc (or any
other compact structure'), is the equilibrium structure,
this procedure will allow us to extract some interesting
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information about the metastable HS solids (here bcc and
sc). Anticipating our results, we will find that in the equi-
librium solid (fcc) the particles are well localized, corre-
sponding to large a values. In this case it is more con-
venient to use the real-space representation (4.6a). In the
metastable solids (bcc, sc) the particles will instead be
much more delocalized, corresponding to much smaller a
values. In this case it is often easier to use the
reciprocal-space representation (4.6b). If we want to
study both the stable and metastable solid structures it
will thus be necessary to evaluate (4.5) both for small and
large a values. Consider first the large a values. Using
(4.6a) in (4.5) one obtains, using moreover the periodicity
of the lattice,

|
Béig=In A 3—1+ <« 3/2fdrex (—ar?)n[o?
id o ] - } p(—ar”)n[o°p,(r)]
A 3 32 32 e
=In > -1+ % fdrexp(—arz)ln _— exp(—ar?) |1+ Ei'e[ ar ar]]
A ? 5 ao i 1 —x2 —[(x—VaR,?—x?]
=l || =4S+ [dxe *m |1+ Se : ] , .7

where x=Var, and the dash indicates that R; =0 is excluded from the sum over {R;}. For large a values this sum is
exponentially small and, to dominant order, Eq. (4.7) reduces simply to

5. 3. ao?
2 2%,

A

— (ao?—> ) .
g

B¢ia=In

(4.8)

By direct numerical integration it has been verified® that for the cubic lattices Eq. (4.8) can be used, with an accuracy of
one part in 10°, for aa?> 100, where a is the lattice spacing. From Eq. (4.8) it is seen that ¢, is a monotonically in-
creasing function of a and hence that this term alone cannot stabilize the solid. For small a values we rewrite Eq. (4.7),
using (4.6b) as

3
A 3 1 2 & (=)t e —ps
q=In|— | —1+Inp,o°+— | dxe™*
B¢ld o npg 17_3 /2 f n§l n Ps
Al 3, e (=)t 1 _p k2 /4a ik |"
=In ; —1+1n(psa )+ 21 n fdx1T3/2e b ‘2!9 7T e
n= J
3 2 2 2
o (__yn+1 —(1/4a)k; + -+ +k7 ) —(1/4a)lk; + -+ +k; |
= [ | —1+m(p,oh+ L s . e . " 4.9)
o n=1 no
[
where x=V ar, and the dash indicates that k ;=0 is ex- _ ’ 3 . —k2/2a )
cluded from the sums over {k;}. For small a values, the Béia=In P 1+In(o"ps)+5C e , ac”—0
dominant contributions come from the n=1 term with (4.10)

k;=k; and from the n=2 term with k;=k; and

k;, = —k,, where k, is the smallest nonzero RLV. To where C, is the number of nearest neighbors in reciprocal
dominant order we obtain thus from (4.9) for small a space and k; the shortest RLV. Unfortunately the
values asymptotic expansions of (4.8) and (4.10) do not match
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very well for the intermediate a values. Therefore, we
have used the numerical results of Baus and Colot® for
10<aa?<100, Eq. (4.8) for @a®> 100, and Eq. (4.10) for
aa*<10 [with C, in (4.10) slightly adjusted so as to
match the numerical results® at aa?=10], where a is the
lattice constant. In this way the accuracy of B, is es-
timated to be everywhere of one part in 10°.

B. The excess free energy

For the nonperturbative DF theories under discussion
here (essentially the GELA and the SCELA) the excess
free energy per particle of the solid ¢.,[p,] is given in
terms of the excess free energy per particle of the fluid
¢ex(p f ) by

bexlps 1=0ex(P) 4.11)

where p'is the density of the effective fluid (or liquid) used
to describe the solid [cf. Eq. (3.1)]. Once p is known
dex(P) can be obtained from Eq. (2.17) by using the PY
(HS) DCF or directly from the excess part of Eq. (4.2)
(with ¥ =0 for the PY DCF). Substituting this result in
(4.11) we finally obtain the excess free energy ¢., of the
solid. To determine 5 we return to (3.16) which we write
using (4.6):

J

—(a/2)(r—R;)?

/2
o 7
Jy drg;

L2 a
BbulpAN=—p, e 7 [Fan

J

B¢ex(ﬁ(k))= - 2

a
2

where C(k ;p) is the Fourier-transform of C(r;p) defined
as in (4.13). Using the results of Sec. II1 E, we can write
p(A) formally as in Eq. (3.31) and follow the procedure
outlined there to solve (3.32) or (4.15) for the GELA solu-
tion.

Finally, to close the approximation, we will use as
DCEF for the effective fluid the PY result:*

Cr;p)=06(1—x) 3 x*Ci ()
k=0,1,3

(4.16)

or one of its HS extensions.!” In (4.16), ©(x) is the Heav-
iside step function, x =r/0,Co(n)=—(1+29)2/(1—7)%,
Ci(n)= 617(1+ L2 /(1—n)%, C3(9)=(9/2)Cy(n), and
n=(m/6)a°p for HS of diameter o and density p. Using
(4.16) in (4.15) all the expressions can be computed
analytically.%!*> The solution of (4.15) will depend on the
lattice structure (through {R;}), on the lattice constant'’
or on p,, and on a. To solve Egs. (4.15) and (4.16) one
can use the iterative procedure outlined in Sec. IITE
starting the search from p=p,. We have verified that
changing this initial guess by an order of magnitude does

_mar+RP eA | A
e [ dr ll

- ]é(k,-;m'n
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(az/z)(r—k,.)2

fdr

a
27

_ (a/2)(r+R,)

w(r;p),
(4.12a)

p=p, e i (4.12b)

j

D(k;3p)

where r=|r|, R,=IR;|, k;=1k;|, and w(r;p) is the
weighting function and @ (k ;p) its Fourier transform:

D(k;p)= [dre™ w(r;p) . 4.13)

Here, in (4.12), and below we will take advantage of the
fact that the functional form of p (r) has been partially
resolved by using (4.6) so that for a given lattice structure
P becomes a function of a and of p;,p=pla,p;,), and we
may thus drop henceforth the more accurate functional
notation used in Secs. II and III. For w(r;p) we obtain
then using (3.16b), (2.12), and (2.16),

f dM1—=A)C(r;p(A)) .

w(r;p)= 4.14)

Boex(P)
Because of the appearance of p(A) in (4.14) it is in fact
more convenient to start from (3.13) and rewrite Egs.
(4.12)-(4.14) in the form of an implicit equation for p(A):

C(r;p(A)), (4.15a)

) (4.15b)

not affect the results, indicating the uniqueness of the
solution. For aa?> 30 we have used (4.15a) while (4.15b)
was used for aa? <30 with both results matching well at
aa?=~30, a being the lattice constant. The iterative pro-
cess converges very quickly; the influence of @, with n>2
in (3.31) on the result, p=a, was found to be small. A
solution stable to one part in 10° can thus be easily ob-
tained. This solution 5 is then used in (4.11) to obtain the
excess free energy of the solid. Finally, the total free en-
ergy ¢,4+¢., is minimized with respect to a for each p;
and lattice structure. The resulting a.;, value, together
with pla,;.(ps),p,) determines then the total free energy
of the given crystal structure. The resulting free-energy
data are then fitted to a fifth-order polynomial and the
pressure p and chemical potential p of the HS solid are
finally obtained from this polynomial using Eq. (4.1).

C. The equilibrium HS solid

We have found that of all three cubic lattice structures,
the fcc is the most stable one. In fact, instead of the fcc
we could have used any compact structure (fcc, hep, ran-
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FIG. 2. The reduced free energy per particle (B¢) vs the
packing fraction (7)) of the HS fluid, bcc, and fcc solid, as ob-
tained from the GELA. The Carnahan-Starling approximation
has been used for the actual fluid and the Percus-Yevick direct
correlation function for the effective fluid describing the solid.

dom compact stacking of dense lattice planes, etc.)
without changing the results. This is due to the fact that
the contribution to (4.15a) of the third neighbor shell,
which could distinguish the compact structures, is negli-
gible. The equilibrium HS solid is thus a compact struc-
ture. This is in agreement with the simulation results of
Frenkel and Ladd.!® Any differentiation between the
compact structures would require a very precise deter-
mination of the tail of the HS DCF. The (fcc) HS solid is
found to be stable up to the fcc close packing density
(n1cp=0.74). Lowering the density an exchange of stabili-
ty with respect to the HS fluid is found to occur at
7=0.515 and finally below 7=0.480 the fcc solid be-
comes unstable, i.e., the corresponding free-energy
minimum disappears. This behavior is shown in Fig. 2.
The pressure of the (stable and unstable) solid are com-
pared to the simulation results!® in Fig. 3. The agree-
ment is very good. The results of the GELA and SCELA
are very close one to another and both are superior to the
other nonperturbative theories MWDA, ELA, and also
the WDA). To understand this excellent behavior we ob-
serve that the fcc HS solid is described here in terms of
an effective HS fluid with a rather low density (see Fig. 4).
In fact, for the stable solid these densities are low enough
(750.4) for the PY DCF (and its underlying PY
compressibility equation of state) to become essentially
exact. To test this we have repeated the calculations with
an alternative HS DCF that contains the Carnahan-
Starling equation of state'* but this did not change the re-
sults. We also know!> that for the compact fcc structure
the Gaussian approximation for the density profiles is
fairly accurate.?’ Therefore we may safely assume that
one is testing here the basic assumptions behind the
effective liquid idea of Sec. III and not its HS implemen-
tation. The possibility to map the thermodynamic prop-
erties of the HS solid onto those of an effective HS fluid
appears thus to be rather well established.

To proceed we now inquire for the possible two-phase
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FIG. 3. The complete HS fluid-fcc phase diagram, in the
pressure (p* =Bpo’)—density [7=po>(7/6)] plane, as obtained
from various nonperturbative density functional theories.
Shown are the results of the GELA, the ELA (Ref. 6) and the
WDA (Ref. 13) compared to the simulation results.!”~2! The tie
lines separate the fluid and solid branches into a stable and
metastable portion. On this scale the differences between the re-
sults of the SCELA and GELA and also between the MWDA
and the WDA would not be visible (except for the position of
the tie line which is given in Table I). All theories use the
Percus-Yevick direct correlation function to describe the solid,
and also for the fluid in the case of the ELA whereas the WDA
and the GELA use the Carnahan-Starling approximation for
the fluid.

coexistence between the fcc HS solid and the HS fluid.
To this end we have to solve the following two-phase
coexistence conditions

(4.17a)
(4.17b)

Pslps)=pslpy) s
Bslps)=pslps),

expressing the constancy of the pressure (p) and of the
chemical potential (u) (with the temperature providing
only a constant scale factor for HS). For the HS solid

40 o 60 80

0 20

100

FIG. 4. The packing function of the effective HS fluid (%) vs
the Gaussian width order parameter (ao?) of a HS solid of
packing fraction 7=0.52 as obtained from the GELA.
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ps(ps) and p (p,) have been computed as explained in
Sec. IV B. Because p, in (4.17) is the actual density of the
fluid (which is much larger than the effective density) it is
no longer immaterial which HS fluid equation of state is
being used. In fact we found that the solution of (4.17) is
fairly sensitive to the underlying fluid equation of state
(see Table I). Good coexistence data can be obtained
from the PY-compressibility equation of state [see (4.3)]
but when the much more accurate CS equation of state
[see (4.3)] is used the resulting coexistence data become
virtually identical to those of the simulation results?! (see
Table I). The full (fluid-fcc solid) HS phase diagram can
thus be obtained from the GELA with a high accuracy
performing only relatively simple calculations [e.g., only
the real space expressions (4.6b), (4.8), (4.12a), and (4.15a)
need to be used for the fcc structure]. The only property
which is not reproduced accurately by the GELA is the
Lindemann parameter L (see Table I). This, however, is a
structural property and hence much more model depen-
dent than the thermodynamic properties we did set out to
compute. It is not unreasonable to think that the Gauss-
ian approximation (4.6) is the main source of error in the
evaluation of L. This however, deserves further study.
Notice also that (linearly) extrapolating the high-density
behavior of L (see Fig. 5) it is found that L vanishes at
n=0.736 providing hereby a good estimate of the fcc
close-packing density (7cp=0.740).

D. The metastable HS solids

Since the HS system is often used as a reference system
in the study of more realistic potentials,“ for which the
equilibrium solid is not necessarily a compact structure,

G
0] BCC
0.21 .
L .
0.17
0.0 | i,
_ . 0.70

FIG. 5. The Lindemann ratio (L) vs density (7) of the bcc
and fcc HS solids as obtained from the GELA. In the Gaussian
approximation of Eq. (4.6) we have L(bcc)=(2/aa?)!’? and
L(fcc)=(3/aa?)!’?, with a the lattice spacing and a the Gauss-
ian width order parameter. Notice that extrapolating linearly
the fcc values we find L(fcc)=0 for n=0.736 providing hereby a
good estimate for the fcc close-packing density (7g.=0.740).

it is of some interest to inquire whether the HS potential
can also stabilize other crystal structures besides the fcc
structure. In the context of the ELA this question has al-
ready been investigated®!® for the cubic lattices (sc, bcc,
fcc). It was found there that the HS potential could not
stabilize the sc structure whereas the bcc structure, al-
though stable at high densities, remained metastable with

TABLE 1. The fluid-fcc solid coexistence data as computed from the nonperturbative density-
functional theories of hard-sphere freezing and compared to the simulation results. Here n=(m/6)op
is the packing fraction of the coexisting solid (s) and fluid (f) phases of hard spheres of diameter o and
density p. Further, Ap=1,—7 is the reduced-density change, As =s '+ —S, the entropy change per par-
ticle, p*=Bpo? the reduced pressure at coexistence, and L the corresponding Lindemann parameter
[root-mean-square displacement divided by the nearest-neighbor distance; L =(3/aa?)!’? for a fcc crys-
tal with a being the lattice constant p;,=4/a*]. All theories use the PY DCF to describe the solid,
while the equation of state used for the fluid is indicated in parentheses [PY or CS; see Eq. (4.3)].

Ny s An /7y, As/kg p* L
MC? 0.494 0.545 0.094 1.16 11.7 0.126
GELA® (CS) 0.495 0.545 0.092 1.15 119 0.100
GELA® (PY) 0.472 0.522 0.096 1.10 10.3 0.120
SCELAS® (CS) 0.508 0.560 0.093 1.27 13.3 0.084
SCELA® (PY) 0.484 0.538 0.100 1.21 11.2 0.098
WDA?* (CS) 0.480 0.547 0.122 1.41 104 0.093
MWDA* (CS) 0.476 0.542 0.122 1.35 10.1 0.097
ELAf (PY) 0.520 0.567 0.083 1.36 16.1 0.074

*From Hoover and Ree (Ref. 21).
®From this work.

°From Baus (Ref. 9) and this work.
9From Curtin and Ashcroft (Ref. 13).
‘From Denton and Ashcroft (Ref. 12).
‘From Baus and Colot (Ref. 6).
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respect to the fluid phase. In a recent study?? a stable bce
HS solid was, however, found within the WDA and we
will therefore reconsider this question here within the
GELA because such relative stability problems are quite
sensitive to the approximation scheme. Notice that in
the literature one often finds the statement?? that the bcc
HS solid is unstable with respect to shear and hence that
Eq. (4.6) can only be used to describe a constrained
(shear-stabilized) bcc HS solid. This argument is, howev-
er, based on lattice-sum considerations which state?* that,
at zero temperature, the shear modulus of the bcc phase
of inverse power potentials [ ~(o /r)"] of large index
(n =7) is negative. It should be stressed here that since
the HS system is always pressure stabilized, zero-
temperature arguments are strictly speaking not applic-
able to it. The argument should therefore be recon-
sidered at finite temperature (or pressure) using, for in-
stance, the DF method to compute the elastic constants
of the bcc HS solid in analogy with those calculations®*
already performed for the fcc HS solid. In this case one
is probing the stability of the HS solid with respect to
changes in its local density which fall outside the class of
functions considered in Eq. (4.6) which only probes the
stability with respect to particle localization. In the ab-
sence of any such calculations (or simulations) we will
proceed with Eq. (4.6) to describe the bcc HS solid, leav-
ing open the question whether this solid should be con-
sidered as constrained or unconstrained. Contrary to the
earlier findings of the ELA,° and in agreement with the
WDA results,?? we find from the GELA that the becc HS
solid is metastable relative to the fcc solid but stable rela-
tive to the HS fluid for 7 =>0.525 (see Fig. 2). In the low-
density region (7=<0.515) where both the fcc and bcc
solids are metastable relative to the fluid an exchange of
stability between fcc and bce occurs (see Fig. 2) with bee

0 20 40 o 60 80 100

FIG. 6. The reduced free energy per particle (B¢) vs the
Gaussian width order parameter (ao?) of a HS solid of packing
fraction 7=0.52 as obtained from the GELA. Notice that, at
the free-energy minimum a(sc) < albee) < alfcc) corresponding
to an increasing localization of the HS when the lattice becomes
more compact, and ¢(sc) > @(bcc) > ¢lfce), corresponding to an
increasing free-energy barrier separating, respectively, the sc,
bec, and fce solids from the fluid. This suggests that the equilib-
rium fluid-fcc solid transition could proceed via the sc and bee
metastable solids.
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becoming the most stable phase at low density. Notice
also from Fig. 2 that the region of metastability of the
bee phase relative to the fluid extends to lower densities
than for the fcc phase. In the region of marginal stability
(relative to the fluid) the competition between bee and fec
is fairly strong. The major difference between the two
solids stems from the fact that the bce solid stabilizes for
much lower a values in (4.6) than does the fcc solid. This
then implies that in the bce solid the HS are much more
delocalized (see Fig. 5) than is the fcc solid, which is
physically reasonable because the bcc structure is a more
open structure than the fcc structure. This however has
some important consequences for the accuracy of the bcc
results. Indeed, from Fig. 4 it is seen that this implies
that the effective density describing the bcc solid will be
much higher (whereas at constant a these effective densi-
ties are comparable) and therefore the results become also
much more sensitive to the equation of state of the
effective fluid. Our fcc results are thus always more pre-
cise than the corresponding bcc results. This problem is
particularly important if one wants to resolve the small-a
structure of the free energy. An example of the overall

4.75

Bo

4.65

4.55

Bo

4.45

0 10 o 20 30

FIG. 7. Enlarged view, in the small-a region, of Fig. 6 show-
ing that the results for the metastable HS solids (sc and bcc) are
sensitive to the equation of state of the effective fliid used to de-
scribe them. In (a) we show the results corresponding to Fig. 6
and using the usual Percus-Yevick DCF while in (b) we show
the results using the DCF of Baus and Colot,'” with the
Carnahan-Starling equation of state build-in. This behavior can
be understood by observing that at such small a values the
effective densities are still too high (see Fig. 4) for the Percus-
Yevick approximation to be valid.



6660

behavior of the free energy versus a is shown in Fig. 6. It
is seen there that in the small-a region (i.e., the region be-
fore the main valley) some structure develops, including a
secondary minimum [see Fig. 7(a)]. Since these a values
correspond to fairly large effective densities (see Fig. 4)
the details of this structure are largely artefacts of using
the PY equation of state for the high-density effective HS
fluid. This is illustrated in Fig. 7(b) where an improved
DCF, with the CS equation of state build-in, has been
used!” for the effective HS fluid. As a result most of this
small-a structure disappears without modifying the
large-a behavior. The influence of the underlying fluid
equation of state appears to be the largest for the bcc
structure. The accuracy of the bcc results is thus some-
what more difficult to access. Unfortunately the informa-
tion on the bcc HS phase from computer simulations is
fairly scarce. If we compare our free energies with the
simulation results of Curtin and Runge?? we find never-
theless a relatively good agreement. For po’=1.041
(1.100) the simulation results for B¢ (omitting the
InAp—1 term) are?? 6.094 (6.878) whereas the WDA
yields??> 5.975 (6.771). Here the GELA yields 6.118
(6.991) when the PY DCEF is used and 6.049 (6.903) when
the improved'’ (CS) DCF is used.

Finally, we have also considered the sc structure. The
results follow the same trends as above. The sc structure
is metastable with respect to both the bcc and the fcc
structure but stable relative to the fluid. At low density,
in the region of metastability of the solids relative to the
fluid, the sequence is reversed and the sc becomes the
most stable of the metastable solids. It also extends to
lower densities than the bcc solid. Notice from Fig. 6
that the a value corresponding to the free-energy
minimum is very small, pointing to very delocalized par-
ticles as physically expected for the very open sc struc-
ture. From Fig. 4 it is seen that the effective density of
the sc structure is always very high (it saturates at high
density). The sc free energy is nevertheless much less
affected by the equation of state than the bcc free energy
(see Fig. 7). Notice also from Figs. 6 and 7 that the sc
freezing is almost second-order-like with an almost van-
ishing free-energy barrier between the fluid and the solid.
In this respect the results obtained here suggest (see Fig.
6) that the fluid-fcc freezing could proceed via a sc-bcc-
fcc sequence. Indeed, starting from the fluid and raising
the density one first encounters a region where only the
sc is (meta)stable. This local free-energy minimum is
moreover separated from the fluid by a very small free-
energy barrier. Increasing the density somewhat more
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the bcc phase becomes (meta)stable and the free-energy
barrier (i.e., the free-energy maximum separating the bcc
minimum from the minimum corresponding to the fluid)
is higher than for the sc phase but could easily be reached
from the latter. Finally, at higher density the fcc phase
becomes (meta)stable with a free-energy barrier which is
somewhat larger than for the bcc phase. In this process
the HS solid becomes gradually denser and also gradually
more localized. It is thus not unreasonable to think that
the final nucleation of the equilibrium fcc phase could
proceed stepwise via the sc and bcce as intermediate meta-
stable phases. Although we are aware of the fact that the
nucleation process depends on more than free-energy
considerations, we nevertheless think that this specula-
tion is worthwhile a more complete investigation.

V. CONCLUSION

Between all the recent attempts,* aiming at an approxi-
mate density-functional description of classical nonuni-
form equilibrium systems,! those based on nonperturba-
tive theories appear to be the most soundly based. We
have put in evidence what we think to be the essential in-
gredient of such theories, namely the mapping of the ex-
cess thermodynamics of the nonuniform system onto that
of an effective uniform system. This has allowed us to in-
troduce a new and very general theory, the GELA de-
scribed in Sec. III A, from which most of the remaining
theories can be derived by introducing additional as-
sumptions. The predictions of the GELA have been test-
ed here for the description of the hard-sphere solid. The
GELA has been found to be very accurate when com-
pared to the simulation results or to other theories. The
free energy and pressure of the HS solid depart from the
simulation results by less than 3%. Very good fluid-solid
coexistence data have also been obtained leading finally
to a coherent and accurate picture of the complete HS
phase diagram. The theory has a simple formulation and
requires only the direct correlation function of the fluid
as input. The theory predicts, besides the equilibrium fcc
phase, also metastable bcc and sc phases which could
play a role in the nucleation of the fcc phase.
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