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A new method for the molecular-dynamics simulation of bulk planar interfaces at high tempera-
tures is presented. The method uses the basic Parrinello-Rahman (constant-stress) scheme, modified
for the application to inhomogeneous systems. Since our computational cell contains only one in-
terface with two-dimensional (2D) periodic border conditions, we are able to study isolated inter-
faces all the way up to melting. The interaction between boundaries which may lead to their annihi-
lation at higher temperatures, which is a problem when 3D periodic borders are applied, is thus
avoided. As an application, the method is used to study the stability of a grain boundary at high

temperatures.
“premelting” are discussed.

I. INTRODUCTION

There are many problems dealing with mechanical and
thermal properties of materials where processes which
occur at an interface play a critical role. Since the
relevent spatial region for such phenomena, although
sometimes difficult to define precisely, is frequently only a
few atomic layers in extent, molecular-level considera-
tions of structure and dynamics take on central impor-
tance in studies of interfacial systems. The atomistic
methods of molecular dynamics (MD) and Monte Carlo,
in principle, can provide those details if sufficiently realis-
tic interatomic potentials are available."2 However, it is
a fundamental difficulty in the simulation approach to
treat properly the interactions between the interfacial re-
gion and the surrounding bulk matter.

In practice the problem arises in the formulation of the
border conditions for the simulation cell. One is faced
with the simultaneous requirements of a small simulation
cell for economy of computations and a large cell so the
interfacial region is not perturbed artificially by the ac-
tion of the cell borders. In simulation studies of grain
boundaries, bicrystal model are used in which a planar in-
terface, infinite in extent, is represented by a finite simula-
tion cell with border conditions which are periodic in the
two directions along the interface (the x and y borders).
In the direction perpendicular to the interface, the z bor-
ders are expected to simulate the bulk media on either
side of the interface. If one imposes periodic conditions
on these borders as well [thus imposing three-dimension
(3D) periodic border conditions on the system], then
there will be necessarily two interfaces in the cell, a situa-
tion considered unsatisfactory since the two interfaces
can influence each other and, in the case of grain boun-
daries, at high temperatures even annihilate each other.
Also, because of the coupling through the z border, the
two halves of the bicrystal are not free to translate rela-
tive to one another arbitrarily. Besides the problem of
avoiding two interfaces, one also needs the z borders to be
sufficiently flexible to accommodate any deformation or
volume change that may occur in the (inhomogeneous)
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Observations on a possible connection between grain-boundary migration and

interfacial region during the simulation. At present none
of the borders in use can be said to have these properties.

In this paper we present a new method of molecular-
dynamics simulation, applicable to the study of structural
properties of solid interfaces at finite temperature and
stresses, which avoids some of these problems. The basis
of the method is a treatment of the z borders that allows
the simulation cell to expand or contract in the z direc-
tion according to the stresses produced in the cell, as well
as independent translations of the two halves of the bi-
crystal. The approach we use is a variation of the La-
grangian formulation proposed by Parrinello and Rah-
man in which the vectors defining a homogeneous simula-
tion cell can respond to any imbalance between the inter-
nal stress and a prescribed external stress.* In our case
we treat the cell as periodic in the x and y directions with
fixed planar area, while the cell length in the z direction is
a dynamical variable and the z borders are not periodic,
thus imposing 2D periodic border conditions (2D PBC’s).
Atoms are placed beyond the z borders of the simulation
cell as a continuation of the bulk regions and they are al-
lowed to move as a rigid unit. Thus the simulation cell
contains a single isolated interface, and it will accommo-
date dimensional changes normal to the interface and
translational motions parallel to the interface plane.

A central question in the simulation of grain-boundary
structures has been the nature of a structural transition
which has been claimed to exist in the range of 0.5T,,
and above, where T,, is the bulk ideal-crystal melting
point.>~® Simulations using 3D PBC’s (Refs. 5 and 6)
and 2D (Ref. 7) PBC’s with fixed z borders have been car-
ried out, leading to results which all show a significant
thermal disordering; however, one cannot conclude
whether the interface undergoes a melting transition of
its own.!® Part of the difficulty clearly stems from the
treatment of the z borders. In the case of 3D periodic
borders, enhanced interaction, thermally activated, be-
tween the two boundaries in the cell gives rise to bound-
ary migration.S'g'” In the case of fixed borders, relief of
thermal stress induced at the interface is a concern.!?

The plan of this paper is as follows. In Sec. II we de-
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scribe the model system for interface simulations in some
detail. In Sec. III the results of the equilibration of an
ideal crystal at elevated temperatures using the 2D PBC
model are compared to results from an identical simula-
tion performed with 3D PBC’s. In Sec. IV the equilibra-
tion of a grain boundary is investigated while the kinetics
of the grain boundary near the melting point is discussed
in Sec. V. Finally, in Sec. VI, we present some con-
clusions on the connection between the observed grain-
boundary migration and earlier studies on premelting
phenomena in grain boundaries.

II. SIMULATION MODEL

An important problem in simulating an isolated inter-
face is its proper embedding in a bulk environment. As
pointed out in the Introduction, this requires the
modification of the commonly used 3D PBC’s to account
for the inhomogeneity in the z direction of the simulation
cell introduced by the presence of the interface (which
lies in the x-y plane; see Fig. 1). The inhomogeneity may
be structural (such as a volume change in the interface re-
gion) or chemical (for example, for dissimilar-material in-
terfaces). As long as the interface is planar and coherent,
i.e., as long as it can be characterized by a periodic planar
unit cell, 2D periodic borders are appropriate in the x-y
plane. In contrast to 3D PBC’s they reflect the physical
nature of planar defects.

The geometrical layout of our simulation cell (Fig. 1)
combines 2D PBC’s in the plane of the interface with its
embedding in bulk-crystal regions. For that purpose the
simulation cell is subdivided into two regions, a region I
in which the equations of motion are solved explicitly for
all atoms and a region II consisting of two rigid blocks,

| H (2,2) |

—

REGION II

REGION I H (3,3)

REGION I

y

FIG. 1. Schematic diagram of the region-I-region-II simula-
tion method. An interface between different materials is indi-
cated. Also shown are the simulation-cell dimensions in the y
and z directions [H(2,2) and H(3,3)].
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one on either side of the interface. The extent of the
blocks in the z direction is obviously determined by the
range (i.e., cutoff radius) of the potential. Such a region-
I-region-II strategy is commonly used in the zero-
temperature (lattice statics) simulation of grain boun-
daries.'*!* The challenge at hand lies in the finite-
temperature simulation of the proper dynamical behavior
of this complex geometrical setup.

Whereas the atoms in region I are individually allowed
to move in response to the forces acting on them, the
atoms in region II are held fixed at their ideal-crystal po-
sitions. However, each rigid block is permitted to move
as a unit in response to the total force exerted by region I.
Initially, the positions of the rigid blocks are fixed by tak-
ing the distance between the outermost plane of region I
and the first plane of region II to be the perfect-crystal
interplanar spacing appropriate for the simulation tem-
perature.

The movement of the rigid blocks in the z direction is
conceptually rather different from their translations
parallel to the interface plane. Whereas the movement in
z is governed by the pressure exerted on the rigid blocks
by region I, the sliding of each block is controlled by the
force exerted on the block across the region-I-region-II
border. Thus, the z movement is treated in the usual
manner of the Parrinello-Rahman method,* while each
block translates in the x-y plane as a single particle with
an effective mass. In this formulation, each block con-
tributes 2 degrees of freedom to the system.

While a general Parrinello-Rahman treatment is possi-
ble (in which all six walls of the simulation cell move as
corresponding pairs) it is not generally desirable in the
simulation of isolated interfaces surround by bulk regions
since the x-y dimensions of the interfacial region are fixed
by the lattice parameter(s) of these bulk regions. These
lattice parameters are input parameters for our simula-
tion. They are determined independently from a
constant-pressure simulation of a bulk ideal crystal (with
3D PBC’s) at the desired temperature for the same intera-
tomic force model. Having thus fixed the planar (x-y) di-
mensions of the simulation cell, the system is allowed to
expand or contract in the z direction.

The following mathematical formulation of the dynam-
ical equations for our model system follows rather closely
the Parrinnello-Rahman scheme with modifications indi-
cated as necessary. First, in order to characterize the
translational configurations of the rigid blocks, we define
the vectors T*=(T,F, T,,T,;*) and T~ =(T,,T,,T,)
for the upper (4) and lower (—) block, respectively.
Then, at fixed volume and, for simplicity, for pairwise in-
teractions between the atoms, the potential energy of the
system may be written as follows:

Vr{q;})=1 3 V(q,)+1 3 V(gy) @2.1)
iLjE1 i€l
i#j JEII
with
quzq,_qj, i,jEI (2.2)
or
q;=q;,—(q;+T%), i€LjEIl, (2.3)
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where the subscript “0” indicates that the atoms in re-
gion II are at ideal-crystal lattice positions. Thus, while
the atom positions in the rigid blocks are fixed relative to
their respective centers of mass, the two centers of mass,
characterized by T, are dynamical variables. These al-
low the independent translation of the two halves of the
bicrystal. As illustrated in Sec. V below, the six variables
in T* represent very important degrees of freedom of the
interface system.

The key to the Parrinello-Rahman method* is to intro-
duce a 3 X3 matrix, H, the columns of which are vectors
describing the direction and length of the walls of the
simulation cell (Fig. 1). The elements of H, are then
treated as dynamical variables. New reduced particle
coordinates, {s;}, are then defined via

q,=H:s,, (2.4)
where, because of the periodicity in x and y,
—0.5<s5,=0.5,
(2.5)
—0.5<s;,<0.5 .

The vectors TV are also scaled, thus defining the reduced
translation vectors t*

TH=H-t* .

(2.6)

Finally, Eq. (2.3), which describes the separation between
particles in region I and region II, becomes

sp=s;,—(s)+t"), (2.7)

where it is understood that s? is now held fixed. Equa-
tions (2.1)-(2.7) specify the potential energy for the sys-

tem

Vilis;},t5H)=1 3 3 V(H
i€l jel
]

+13 3 VHsT)

ieliell
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The equations of motion for the system may be derived
from the Lagrangian formalism by introducing the La-
grangian,

L=K—V;, 2.9)
where the kinetic energy, K, is given by
2
= 2 d_ 'S; +%MWTT(E'ﬂT)
i€l
d 2
+iMr 3 | CH -+ (2.10)
<

Here, we have introduced an adjustable ‘“wall mass,”
My, associated with the H matrix and a T vector mass
M. In the simulation these masses are adjusted, by trial
and error, so that the variables associated with them fluc-
tuate on the same time scales as the particles. (Typically,
My, and M are about 10 particle masses.)

From the usual Lagrangian formalism, one finds the
following equations of motion of the particles in region I:

m$;=— 3 X;s;—mG~'G§ GED, @211
jeLI

where

Xij:[dV(qij)/dqij ](l/qij) > (2.12)
and

G=H"H . 2.13)
The positions in region II are given by

s =s]+t" . 2.14)

The equations of motion for the scaled T vector are

> X Xys;

i€l jent

Mpt*= MG -Gi* . (2.15)

t* is seen to move in response to the total force acting be-
tween region I and region II. Finally, the equations of
motion for the walls are obtained:

MWH: > mvv,+ ZMT(H'ti)(I;‘I'ti)_% > (Xij /Qij )QIjqij_% 2 2 (Xij /qij )qijqij (HH™!
i€l + ijEI i€l jel (2.16)
i) .
[
The terms in the small parentheses are recognized as the = homogeneously. However, as described in the Introduc-

pressure tensor generalized to include the T vectors. The
H matrix, or walls of the simulation cell, thus move in
response to the stress acting on region I as in the
Parrinello-Rahman scheme.

The Hamiltonian for this system may be derived from
its Lagrangian and energy is, of course, conserved by
these equations. The systems thus behaves physically just
as well as a homogeneous 3D periodic system, even to the
point of conserving energy. However, the Parrinello-
Rahman constant-pressure scheme introduces an unphys-
ical aspect in the simulation of interfacial systems; it re-
quires that volume and strain fluctuations take place

tion, the most important difference between interfacial
and bulk systems is the inhomogeneity of the interfacial
system perpendicular to the interface.

This problem can best be seen by considering the sepa-
ration, in real space, between two particles in region I1™.
For two particles i and j Egs. (2.4) and (2.14) yield

q,—q;=H-(s)+t*)—H-(s)+t")

=H-(s?—s?) . (2.17)

Thus, although in s space the distance between the parti-
cles is fixed, in real space their separation is not fixed but
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depends on H. Since, generally, H(1,1) and H(2,2) are
held constant to fix the planar area, Eq. (2.17) is only a
problem for the z components

9 —q;=H(3,3)(s3—s)) . (2.18)

However, H(3,3) is obviously affected by the inhomo-
geneity in the z direction. Therefore, the rigid blocks do
not behave as if they were bulk ideal-crystal regions.
This unphysical behavior of the rigid blocks due to the
inhomogeneity in the z direction thus necessitates the fol-
lowing ad hoc modification of Egs. (2.14) and (2.15)

9i: =4;; + Tzi ’

. (2.19)
TF=+[H(3,3)—H(3,3)]/2,

where H,(3,3) is defined as the initial value of H(3,3).

These equations are written in real space, as opposed to
s space, since it is the scaling by H which caused the orig-
inal problem. Although now the system no longer con-
serves energy (since the equations of motion cannot be
derived from a Hamiltonian), these equations give the
desired behavior as we shall demonstrate below. Physi-
cally, they require that the rigid blocks are at a fixed posi-
tion with respect to H(3,3). Since, as pointed out above,
the correct lattice parameters for the bulk regions are in-
put parameters, any change in H(3,3) is due to the inter-
face. Equation (2.19) takes account of this by holding
fixed the interplaner spacings in region II.

It should be noted that now T, is no longer a dynami-
cal variable. To be consistent, its kinetic energy term is
dropped from the Lagrangian, Eq. (2.10), and from the
stress appearing in Eq. (2.16). It is henceforth fixed by
the constraint in Eq. (2.19).

Finally, we point out certain caveats applied in the im-
plementation of this scheme. A damping term is added
to the equations of motion of the walls and the T vectors
as these variables otherwise cause the system to
“remember” fluctuations in the volume and translation
leading to unphysical effects. In addition, a thermostat is
applied to the system to maintain constant temperature,
as is common in 3D PBC simulations. However, one
does not want to thermostat the rigid blocks in region II
thus inducing artificial relative translations of the halves
of the bicrystal; they therefore drain energy from the sys-
tem causing the planes next to the border to be somewhat
cooler than the rest of the system. To circumvent this
problem, we subdivide region I approximately into thirds
in the z direction and thermostat each third separately.
The central third contains the interface and is the one of
greatest physical importance. The simulation cell is
chosen large enough that the effects of the interface are
confined to this innermost region with the rest of region I
and all of region II serving only to provide the necessary
environment for the interface. It appears that once the
system reaches equilibrium, a single thermostat may be
sufficient. This has not been tested, however, and more
work is necessary to ascertain whether this is actually the
case.
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III. IDEAL-CRYSTAL EQUILIBRATION

Although at zero temperature the model we have de-
scribed produces the correct energy, forces and volume, it
is not clear, a priori, how realistically the system will
behave at finite temperatures. To investigate this, we
have performed molecular-dynamics simulations of an
ideal crystal using both 3D PBC’s and 2D PBC’s. The
3D PBC simulation was performed using the Parrinello-
Rahman constant-pressure scheme and the resulting lat-
tice parameter was then used as input in the 2D PBC
simulation. As was described above, the planar area in
the 2D PBC simulation was fixed and the length of the
simulation cell was allowed to fluctuate in the z direction.
All of our simulations were performed with a Lennard-
Jones potential parametrized to represent Cu (e=0.167
eV and 0=2.3151 A). The zero-temperature lattice pa-
rameter, a,, for this potential is 3.616 A. The potential
was cut off at 1.49a, and shifted to cause the force to go
smoothly to zero at the cutoff. The region I of the simu-
lation cell consists of 32 (001) planes parallel to the x-y
plane. Each plane contains 29 atoms making a total of
928 atoms. At zero temperature, the cell is square and
the x, y, and z dimensions are 3.808a,, 3.808a,, and
16.000a,, respectively. Because the interplanar spacing
(in the z direction) is 0.5a,, regions IIT contain three
planes each thus satisfying the criterion that the z dimen-
sion of region II is greater than the cutoff. This geometry
was chosen as it is the reference system for the grain-
boundary simulations to be described below, where the
importance of the large planar unit cell and well-defined
lattice planes will be discussed.

Because the primary application of our MD model is to
spatially inhomogeneous systems, it is necessary to moni-
tor properties, such as the potential energy and tempera-
ture, locally. We therefore divide the simulation cell into
32 slices in the z direction with each slice containing one
lattice plane. Properties were then tabulated indepen-
dently for each slice as well as for the whole system. This
yields a profile of the distribution of the various proper-
ties in the z direction.

The comparisons of the 3D PBC and 2D PBC ideal-
crystal simulations presented below are made for identi-
cal runs at 900 K (~75% of melting) for 5000 time steps.
(This melting point is the temperature at which the sys-
tem spontaneously melts when the temperature is raised
at the same rate as was used in all simulations described
here.) The time step size of 0.0365 psec provides energy
conservation to six significant figures in the 3D PBC sys-
tem. Instantaneous properties were tabulated throughout
the runs while time-averaged properties were calculated
for the last 4000 steps, after initial transients had died
away (i.e., after the system had equilibrated). Figure 2
shows the time-averaged potential-energy distributions in
both the 3D and 2D systems. One sees that over most of
the simulation cell, the distribution of potential energy
shows similar fluctuations about the same mean value in
both systems, the only exception being near region II in
the 2D system. The atoms which interact directly with
region II tend to have the same potential energy as the
static atoms in region II which understandably is lower
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FIG. 2. Average-potential-energy profile for the 3D PBC
ideal crystal (open symbols) and the 2D PBC ideal crystal (solid
symbols) after 5000 time steps.

than the mean value in region I. (At the lattice parame-
ter of 3.744 A, which is appropriate for 900 K, the energy
of an atom in region II is —0.996 eV.) In practice, the
spatial extent of this effect is such that region I has to be
large enough to ensure that the interface is at least two
cutoff radii from region II. In making quantitative com-
parisons between the 2D and 3D ideal crystals, we will
therefore neglect the contribution of the outermost three
planes in region I to the overall system properties.
Neglecting the outermost three planes in region I, we
find that the average potential energy in the 2D ideal
crystal is —0.8923 eV while in the 3D system it is
—0.8937 eV. Considering that (a) the 2D system uses
three thermostats whereas there is only one in the 3D
system and (b) the fact that the input lattice parameter in
the 2D simulation is only known to finite precision, this
agreement is excellent. Figures 3 and 4 show the time-
averaged profiles of the temperature and interplanar
spacings, respectively. We see again that the profiles are
essentially the same in the two systems with the exception
that the interplanar spacing, again, shows a region II
effect at the outermost planes. Because the atoms in re-
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FIG. 3. Average-temperature profile for the 3D PBC ideal
crystal (open symbols) and the 2D PBC ideal crystal (solid sym-
bols) after 5000 time steps.

Plane

FIG. 4. Average interplanar spacings for the 3D PBC ideal
crystal (open symbols) and the 2D PBC ideal crystal (solid sym-
bols) after 5000 time steps.

gion II do not individually vibrate there is less thermal
expansion at the region-I-region-II interface than in the
bulk. However, this effect is again limited to the region I
planes immediately adjacent to region II. Neglecting the
outermost three planes in region I, the overall average
interplanar spacing is 0.5164a, compared to 0.5168a, in
the 3D system. The variance (in time) is found to be
0.0004a,; i.e., the interplanar spacings are indistinguish-
able in the two systems.

Finally, we consider the static structure factor, S(k),
which is the Fourier transform of the density. The
square of its magnitude is given by
2

+

2
IS(k)[2=

>

—]1\7 2 cos(k-q;)

% zsin(k-qi)

(3.1

where, for the overall S(k), the sums include all atoms,
while for the planar S(k) the sums include only the
atoms in a plane. When the wave vector is chosen to be a
reciprocal lattice vector, the magnitude of S(k) is a mea-
sure of the crystalline order. In our simulations, k was
chosen to be a reciprocal lattice vector in the x-y plane,
so the magnitude of S(k) [henceforth denoted simply as
S(k)], measures the planar order. At zero temperature
S(k) is equal to unity, while in the liquid it fluctuates
close to zero. Figure 5 shows the instantaneous S(k)
plane by plane at the end of the simulations. Again,
agreement between the 2D PBC and 3D PBC results indi-
cates that the planar structure in the two systems is iden-
tical.

Other properties, such as the pressure, mean-squared
displacement in the x-y plane and mean-squared displace-
ment in the z direction, behave in the same qualitative
manner as those shown above. Typically, a small effect
due to the region-I-region-II interface is observed, and is
confined to the two or three planes adjacent to region II.
As the temperature is raised, these effects may extend an
additional one or two planes into region I, but even at
1200 K (approximately 95% of melting) they are confined
to less than two cutoff radii of region II.

Finally, we note that while the fluctuations, from one
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FIG. 5. Instantaneous S(k) profile for the 3D PBC ideal
crystal (open symbols) and the 2D PBC ideal crystal (solid sym-
bols) after 5000 time steps.

plane to another, in the various properties are of similar
magnitude in the 2D and 3D systems, they do appear to
be larger in the 2D system in some properties, such as the
energy. These appear to be caused by the dynamical
differences in the 2D and 3D systems. Specifically, the
2D system contains degrees of freedom due to the possi-
bility of the independent translation of the top and bot-
tom halves of the crystal afforded by the T vectors which
are not present in the 3D system. These additional de-
grees of freedom give rise to additional fluctuations in
quantities which are dependent on correlations between
planes, such as the potential energy and interplanar spac-
ing, while leaving unaffected properities such as the tem-
perature and structure factor which are not so strongly
dependent on interplanar coupling.

IV. GRAIN-BOUNDARY EQUILIBRATION

Having demonstrated that the 2D PBC model accu-
rately reproduces the properties of an (homogeneous)
ideal crystal, we now consider the equilibration of an (in-
homogeneous) interfacial system. We have performed
molecular-dynamics simulations of the so-called 229
twist grain boundary on the (001) plane over a range of
temperatures, both to investigate the 2D model as ap-
plied to an interfacial system and to investigate the high-
temperature stability of the grain boundary. (In the usual
terminology, = is the inverse density of coincidence lat-
tice sites.) The two factors motivating the choice of this
grain boundary are its relatively large planar unit cell and
the large interplanar spacing of the (001) planes. Because
of the large interplanar spacing, the lattice planes are
easily distinguished thus making clear the onset of disor-
der should the boundary prove unstable at elevated tem-
peratures. The large planar unit cell allows us to consid-
er this a ‘“‘generic” boundary as opposed to boundaries
with small planar unit cells whose energy is known to be
rather sensitive to relative translations of the two halves
of the bicrystal.!* Similarly, we chose a twist rather than
a tilt boundary (as is commonly used in the study of the
high-temperature stability of grain boundaries®~°) be-
cause symmetrical tilt boundaries have the smallest pla-
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nar unit cell possible on a given plane and, hence, are also
highly sensitive to translations.'*

The technical details of the grain-boundary simulations
are identical to those described in the previous section ex-
cept that the runs consisted of 10000 time steps. In par-
ticular, the potential, time step, simulation cell, and num-
ber of atoms are the same. The input grain boundary
used in the simulations was first relaxed statically at zero
temperature and constant (zero) stress in the z direction.
Because the perfect stacking of the ideal crystal is des-
troyed an increase in the interplanar spacing occurs at
the grain boundary.

The first grain-boundary simulation discussed here
consisted of a total of 10000 time steps at 900 K with
averages compiled over the final 9000 time steps. The
average-potential-energy profile is shown in Fig. 6. The
effect of region II is the same as in the ideal-crystal simu-
lations. The higher energy of the atoms in the grain
boundary is also apparent. The average energy of all
atoms more than three planes away from both the grain
boundary and region II is —0.8915 eV compared to
—0.8937 eV in the 3D ideal crystal; this indicates that
the grain boundary is, indeed, embedded in an ideal-
crystal environment. Figure 7 shows the average-
temperature profile while Fig. 8 illustrates the average
interplanar spacings. Averaging the interplanar spacings
for the surrounding bulk regions in the same way as the
energy, we find an average bulk spacing of
(0.5165+0.0004)a, compared with (0.5168+0.0004)a, in
the 3D PBC ideal crystal, again demonstrating the close
agreement. In all other properties, the atoms three or
four planes removed from the interface behave like ideal-
crystal atoms as well.

We note that in the course of the simulation, the grain
boundary migrated from an initial position between the
16th and 17th planes to one between the 15th and 16th
planes. In the average profiles this migration creates the
appearance that the disorder near the grain boundary has
spread over a wider spatial region than existed at any
given instant. This is seen, for example, in the
instantaneous-energy profile which shows only about six
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FIG. 6. Average-potential-energy profile for the 2D PBC
grain boundary after 10 000 time steps.
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FIG. 7. Average-temperature profile for the 2D PBC grain
boundary after 10000 time steps.

planes affected by the grain boundary as opposed to
about eight in the average-energy profile.

Finally, we show the instantaneous structure factor in
Fig. 9. Because of the relative rotation of the two halves
of the twist-boundary bicrystal, different wave vectors are
needed to characterize the planar order in each half.
Specifically, if k,; is the wave vector chosen for the bot-
tom half, then the vector for the top, k,, is just k, rotated
by the relative misorientation. Then, at zero tempera-
ture, S(k,) equals unity in the lower half of the bicrystal
and zero in the top half while the reverse is true for
S(k,). Both quantities are shown in Fig. 9 where it is
seen that away from the grain boundary, which is more
disordered than the bulk ideal crystal, the system again
behaves like an ideal crystal.

We have performed simulations on this system up to
1050 K and at all temperatures find similar behavior as
described here. Specifically, the effects of region II are, as
in the ideal-crystal simulations, confined to the planes
within one to two potential cutoffs of region II. From
these results and the results of the previous section, we
conclude that the 2D PBC’s provide a physically realistic
model for the molecular-dynamics simulation of solid in-
terfaces embedded in bulk ideal crystal.
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FIG. 8. Average interplanar spacings for the 2D PBC grain
boundary after 10 000 time steps.
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FIG. 9. Instantaneous S(k) profile for the 2D PBC grain
boundary, after 10000 time steps, for the two wave vectors cor-
responding to the planar symmetry of the lower and upper
halves (open and solid symbols, respectively) of the bicrystal.

V. HIGH-TEMPERATURE STABILITY

The 2D PBC model presented in this paper was
developed for the study of interfacial systems at high
temperature where ordinary 3D PBC’s and 2D fixed bor-
ders encounter the problems discussed in the introduc-
tion. To illustrate its properties and dynamical behavior
we have therefore described the equilibration with the 2D
PBC model of an ideal crystal and a grain boundary at
relatively high temperatures. To enable us to study not
only the equilibration but also the kinetics of the grain
boundary at these temperatures, the grain-boundary
simulations were run twice as long as the ideal-crystal
simulations. In particular, the high-temperature stability
of the grain boundary was thus investigated.

We noted previously that at the end of the 900 K simu-
lation, the grain boundary has migrated from between the
16th and 17th planes to between the 15th and 16th
planes. This is clearly seen in Fig. 10(a) which shows the
time variation of the planar structure factors for plane
16. One can see that up to time step 4000 this plane
clearly is part of the upper half of the bicrystal. As time
progresses further, the symmetry of the plane changes to
that of the lower half of the bicrystal, thus signifying mi-
gration of the grain boundary. This migration step seems
to consist of two stages. First, a plane adjacent to the
grain-boundary plane becomes disordered and may
remain so for some time. This is followed by recrystalli-
zation of the plane into the opposite symmetry state. The
nature of the disordered state is unknown at this point.
In particular, we do not know if it is liquidlike or solid-
like with a structure characterized by different sym-
metries than that of the bicrystal. During the migration
the mean-squared displacement (MSD) of the atoms in
the 16th plane, Fig. 10(b), show an almost linear increase
with time. However, it is clear that this is necessary
whether the disordered state is liquid or solid since sub-
stantial atomic rearrangement occurs as the plane
changes symmetry. When the migration is complete, the
mean-squared displacement is again constant.
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FIG. 10. Part (a) shows the instantaneous S(k) as a function
of time for the 16th plane in the 2D PBC grain-boundary system
for the two wave vectors corresponding to the planar symmetry
of the lower and upper halves (open and solid symbols, respec-
tively) of the bicrystal. Part (b) shows the instantaneous x-y
MSD (in unit of 107 2a3), for the same plane, as a function of
time.

To further investigate this problem, we have studied
the same system with ordinary 3D PBC’s with consider-
ably different results. The system then contains two
boundaries and, as for 2D PBC’s, in each case, one of the
planes adjacent to the boundaries shows a mean-squared
displacement which increases roughly linearly with time
although the second stage of the migration never takes
place. While one boundary never completely disorders,
the other disorders considerably with both structure fac-
tors fluctuating significantly. The reason for this behav-
ior can be traced to the lack of translational freedom in
the system with 3D PBC’s. That this is, indeed, the case
was confirmed by introducing 2 extra degrees of freedom
in the 3D case which allowed for independent transla-
tions of the two halves of the bicrystal. (The method for
doing this is described in the Appendix.) The interesting
result was that migration now took place as in the 2D
case. It appears that ordinary 3D PBC’s, which, even
with a thermostat, do not allow the center of mass of the
overall system to move and therefore induce the same
translational state in both boundaries, inhibit the migra-
tion process. Since it is known that migration and sliding
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are intimately connected in grain boundaries'® this cou-
pling between the two boundaries present in 3D PBC
simulations thus appears to inhibit the migration process.

Returning to the 2D PBC simulations, we slowly in-
creased the temperature from 900 to 1050 K and extend-
ed the simulation at that temperature for another 10000
time steps. The behavior observed was similar to that at
900 K with the migration occurring more rapidly. Final-
ly, we increased the temperature to 1100 K. At this tem-
perature, the system was stable for approximately 4000
time steps after which it appeared to melt. Throughout
the run at 1100 K, Frenkel pairlike defects formed near
the boundary in which atoms became mobile, moving
into adjacent slices, before eventually returning to their
original planes. After 4000 steps, these defects were
present in great numbers forming a disordered region
around the boundary which spread with time to eventual-
ly cover the whole system. It appears that the presence
of the structural defect (grain boundary) has lowered the
melting point of the system.

Studies'® have shown that this is probably due to the
fact that the grain boundary causes the system to melt at
the thermodynamic melting point where the free energy
of the liquid is equal to that of the solid. The spontane-
ous melting of an ideal crystal, however, occurs above
this temperature and is dependent on the heating rate,
etc.

VI. DISCUSSION

We have presented a new molecular-dynamics model
for the simulation of interfacial systems. The model
differs from previous models in that 2D periodic borders
are employed allowing the simulation of isolated inter-
faces. Furthermore, the bicrystal is allowed to translate
parallel to the interface plane as well as to expand or con-
tract perpendicular to the interface. While in the present
model only H(3,3) is allowed to vary, an extension of this
model, employing the Parrinello-Rahman method more
fully, would also allow the possibility of strain fluctua-
tions which preserve the planar geometry, although we
have not attempted this.

Comparisons of the equilibration with 3D PBC’s and
2D PBC’s have shown that, aside from a more or less ex-
pected effect due to the constraint at the region-
I-region-II interface, there is no discernable difference in
the results. In particular, a detailed comparison of an
ideal crystal equilibrated with ordinary 3D PBC’s and the
2D PBC model shows virtually no difference in the prop-
erties of the equilibrated crystals. Plane-by-plane profiles
of the potential energy, interplanar spacing, temperature,
and structure factor are also qualitatively similar in the
two models indicating little difference in the distribution
of these quantities in the systems.

The grain-boundary equilibrations show that the atoms
in the region surrounding the grain boundary behave like
bulk ideal-crystal atoms in that the average potential en-
ergy, interplanar spacing, and structure factors are essen-
tially the same as in the 3D PBC ideal crystal. This is
achieved by explicitly distinguishing, in the model, be-
tween the spatial inhomogeneity of the interface region



11580

and the homogeneity of the surrounding bulk regions by
the introduction of the region-I-region-II scheme. Then,
with the interface properly embedded in bulk ideal crys-
tal, we are able to simulate the interface at arbitrarily
high temperatures without incurring the problems which
beset 3D simulations, such as the annihilation of boun-
daries, or 2D simulations with fixed borders which permit
neither relative translations nor thermal expansion.

The model was illustrated with a study of the high-
temperature stability of a grain boundary. Below the
melting point, grain-boundary migration was observed to
occur via a two-step process in which a plane adjacent to
the boundary first entered into a metastable disordered
state after which it recrystallized into the opposite crys-
talline symmetry. This migration appeared to be inhibit-
ed with ordinary 3D PBC’s. However, when full transla-
tional freedom was incorporated into a 3D PBC simula-
tion, the migration again took place. In the case in which
the migration step was not completed (ordinary 3D
PBC’s), the mean-squared displacement of the atoms in a
plane adjacent to the boundary increased linearly with
time as the atoms passed in and out of the disordered
state which is associated with the migration. This leads
us to speculate that the “premelting” phenomena previ-
ously seen may actually have been the stabilization of the
metastable disordered state associated with migration due
to the boundary conditions. In the present case, howev-
er, as the boundary induces ordinary melting at a temper-
ature around 1100 K, we were able to equilibrate our
boundary at 95% of the thermodynamic melting point of
the bicrystal and it appears to be stable. Further details
of the observed connection between grain-boundary mi-
gration and disordering at high temperatures will appear
in another publication.
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APPENDIX

Here, we wish to show that a new degree of freedom
may be added to 3D PBC’s to allow the independent
translation of the two halves of a bicrystal. The problem
is that the motion of the upper and lower halves of the bi-
crystal is coupled by the periodicity in the z direction.
Since we wish to preserve, here, the 3D PBC’s, the only
way to decouple the x-y motion of the upper and lower
halves of the bicrystal is to introduce a new variable. We
shall call this variable T, to indicate its similarity to the
translation vectors in the region-I-region-II scheme. In
the present case, T is a strictly two-dimensional vector in
the x-y plane (parallel to the interface plane). To intro-
duce it, we first write the 3D PBC potential as
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Vil{qi})=1 3 Vig;),

i£]

(A1)

where H and {s;} were defined in Sec. II. The tilde in
(A1) indicates the periodic boundary conditions

Sy =Sy, if ls;;,1<0.5, A2
Sijp=si;—1 if 1.O>s

and similar equations hold for the x and y components of

>0.5, etc. ,

ijz

s;;- For convenience, Eq. (A2) may be rewritten in terms
of a modulus function
5, =mod(s;;,0.5) , (A3)
SO
S = mod(s;;,,0.5 ), (Ad)
5y =mod(s;;,,0.5) .
We summarize these by writing
§;=mod(s;;,0.5) . (AS)

To introduce the T vector, we first define a parameter,

)"ij’by
A;=0 if 5;;, =%}, ,
=1 if s, >5, , (A6)
Ay=—1 if 5, <5y, »

so that A,; tells us whether or not two particles are in-
teracting across the z border. With this definition, the T
vector is introduced by modifying Eq. (A5) as follows:

§;—mod(s;; +1,t,0.5) with T=H-t . (A7)
Explicitly,
§jx —>mod(s;; +A;1,,0.5) ,
5, —mod(s;;, +A;;t,,0.5),
jy jy T Mgty (A8)

—S'ijz —>m0d(s,»jz,0- 5) )

A;=0 unless 5;;,5s;;; .

Equations (A1) and (A8) define the dynamics of the sys-
tem. At constant volume, the equation of motion for T is

. aV(q,;) q;
M:T=33 _ ’ Tj Aij s

aqij qij

.. (A9)
M,.T,=0,

which, because of the definition of kij, shows that the T
vector moves in response to the x and y components of
the net force acting across the z border. Therefore, the
two halves of the bicrystal may translate independently
parallel to the interface plane and the T vector will move
so as to assure that no net x-y force acts across the z bor-
der. Except for the change in the periodic border condi-
tions indicated by Eq. (A8), the equations of motion for
the particles are unchanged. In addition, this system is
conservative and easily incorporated into the Parrinello-
Rahman scheme. It does, however, suffer from the 3D
PBC problem of introducing two boundaries into the unit
cell.
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